PIC16F88

Manufacturer Part NumberPIC16F88
ManufacturerMicrochip Technology Inc.
PIC16F88 datasheet
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Page 101
102
Page 102
103
Page 103
104
Page 104
105
Page 105
106
Page 106
107
Page 107
108
Page 108
109
Page 109
110
Page 110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
Page 106/228:

AUSART ASYNCHRONOUS RECEIVER

Download datasheet (5Mb)Embed
PrevNext
PIC16F87/88
11.2.2
AUSART ASYNCHRONOUS
RECEIVER
The receiver block diagram is shown in Figure 11-4.
The data is received on the RB2/SDO/RX/DT pin and
drives the data recovery block. The data recovery block
is actually a high-speed shifter, operating at x16 times
the baud rate; whereas, the main receive serial shifter
operates at the bit rate or at F
.
OSC
Once Asynchronous mode is selected, reception is
enabled by setting bit CREN (RCSTA<4>).
The heart of the receiver is the Receive (Serial) Shift
Register (RSR). After sampling the Stop bit, the
received data in the RSR is transferred to the RCREG
register (if it is empty). If the transfer is complete, flag
bit, RCIF (PIR1<5>), is set. The actual interrupt can be
enabled/disabled by setting/clearing enable bit RCIE
(PIE1<5>). Flag bit RCIF is a read-only bit which is
cleared by the hardware. It is cleared when the RCREG
register has been read and is empty. The RCREG is a
double-buffered register (i.e., it is a two-deep FIFO). It
FIGURE 11-4:
AUSART RECEIVE BLOCK DIAGRAM
x64 Baud Rate CLK
F
OSC
SPBRG
Baud Rate Generator
RB2/SDO/RX/DT
Pin Buffer
and Control
SPEN
FIGURE 11-5:
ASYNCHRONOUS RECEPTION
Start
RX pin
bit
bit 0
bit 1
Rcv Shift
Reg
Rcv Buffer Reg
Read Rcv
Buffer Reg
RCREG
RCIF
(Interrupt Flag)
OERR bit
CREN
Note:
This timing diagram shows three words appearing on the RX input. The RCREG (Receive Buffer) is read after the third word,
causing the OERR (Overrun) bit to be set.
DS30487C-page 104
is possible for two bytes of data to be received and
transferred to the RCREG FIFO and a third byte to
begin shifting to the RSR register. On the detection of
the Stop bit of the third byte, if the RCREG register is
still full, the Overrun Error bit, OERR (RCSTA<1>), will
be set. The word in the RSR will be lost. The RCREG
register can be read twice to retrieve the two bytes in
the FIFO. Overrun bit OERR has to be cleared in soft-
ware. This is done by resetting the receive logic (CREN
is cleared and then set). If bit OERR is set, transfers
from the RSR register to the RCREG register are inhib-
ited and no further data will be received. It is, therefore,
essential to clear error bit OERR if it is set. Framing
Error bit, FERR (RCSTA<2>), is set if a Stop bit is
detected as clear. Bit FERR and the 9th receive bit are
buffered the same way as the receive data. Reading
the RCREG will load bits RX9D and FERR with new
values; therefore, it is essential for the user to read the
RCSTA register, before reading the RCREG register, in
order not to lose the old FERR and RX9D information.
OERR
CREN
64
MSb
or
16
(8) 7
Stop
RX9
Data
Recovery
RX9D
RCIF
Interrupt
RCIE
Start
bit 7/8
bit 7/8
Stop
Stop
bit
bit 0
bit
bit
Word 2
Word 1
RCREG
RCREG
FERR
RSR Register
LSb
1
0
Start
RCREG Register
FIFO
8
Data Bus
Start
bit
bit 7/8
Stop
bit
 2005 Microchip Technology Inc.