lm2595sx-adj National Semiconductor Corporation, lm2595sx-adj Datasheet - Page 17

no-image

lm2595sx-adj

Manufacturer Part Number
lm2595sx-adj
Description
Simple Switcher Power Converter 150 Khz 1a Step-down Voltage Regulator
Manufacturer
National Semiconductor Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LM2595SX-ADJ
Manufacturer:
NATIONAL
Quantity:
1 100
Part Number:
LM2595SX-ADJ
Manufacturer:
NSC
Quantity:
20 000
Part Number:
LM2595SX-ADJ
Manufacturer:
NS
Quantity:
6 485
Part Number:
lm2595sx-adj/NOPB
Manufacturer:
NS/国半
Quantity:
20 000
Part Number:
lm2595sx-adj/NOPB
0
Block Diagram
Application Information
PIN FUNCTIONS
+V
regulator. A suitable input bypass capacitor must be present
at this pin to minimize voltage transients and to supply the
switching currents needed by the regulator.
Ground — Circuit ground.
Output — Internal switch. The voltage at this pin switches
between (+V
cycle of approximately V
sensitive circuitry, the PC board copper area connected to
this pin should be kept to a minimum.
Feedback — Senses the regulated output voltage to com-
plete the feedback loop.
ON/OFF — Allows the switching regulator circuit to be shut
down using logic level signals thus dropping the total input
supply current to approximately 85 µA. Pulling this pin below
a threshold voltage of approximately 1.3V turns the regulator
on, and pulling this pin above 1.3V (up to a maximum of 25V)
shuts the regulator down. If this shutdown feature is not
needed, the ON/OFF pin can be wired to the ground pin or it
can be left open, in either case the regulator will be in the ON
condition.
EXTERNAL COMPONENTS
INPUT CAPACITOR
C
needed between the input pin and ground pin. It must be lo-
cated near the regulator using short leads. This capacitor
prevents large voltage transients from appearing at the in-
put, and provides the instantaneous current needed each
time the switch turns on.
The important parameters for the Input capacitor are the
voltage rating and the RMS current rating. Because of the
relatively high RMS currents flowing in a buck regulator’s in-
put capacitor, this capacitor should be chosen for its RMS
IN
IN
— A low ESR aluminum or tantalum bypass capacitor is
— This is the positive input supply for the IC switching
IN
− V
SAT
) and approximately −0.5V, with a duty
OUT
/V
IN
. To minimize coupling to
FIGURE 12.
17
current rating rather than its capacitance or voltage ratings,
although the capacitance value and voltage rating are di-
rectly related to the RMS current rating.
The RMS current rating of a capacitor could be viewed as a
capacitor’s power rating. The RMS current flowing through
the capacitors internal ESR produces power which causes
the internal temperature of the capacitor to rise. The RMS
current rating of a capacitor is determined by the amount of
current required to raise the internal temperature approxi-
mately 10˚C above an ambient temperature of 105˚C. The
ability of the capacitor to dissipate this heat to the surround-
ing air will determine the amount of current the capacitor can
safely sustain. Capacitors that are physically large and have
a large surface area will typically have higher RMS current
ratings. For a given capacitor value, a higher voltage electro-
lytic capacitor will be physically larger than a lower voltage
capacitor, and thus be able to dissipate more heat to the sur-
rounding air, and therefore will have a higher RMS current
rating.
The consequences of operating an electrolytic capacitor
above the RMS current rating is a shortened operating life.
The higher temperature speeds up the evaporation of the ca-
pacitor’s electrolyte, resulting in eventual failure.
Selecting an input capacitor requires consulting the manu-
facturers data sheet for maximum allowable RMS ripple cur-
rent. For a maximum ambient temperature of 40˚C, a gen-
eral guideline would be to select a capacitor with a ripple
current rating of approximately 50% of the DC load current.
For ambient temperatures up to 70˚C, a current rating of
75% of the DC load current would be a good choice for a
conservative design. The capacitor voltage rating must be at
least 1.25 times greater than the maximum input voltage,
and often a much higher voltage capacitor is needed to sat-
isfy the RMS current requirements.
A graph shown in Figure 13 shows the relationship between
an electrolytic capacitor value, its voltage rating, and the
RMS current it is rated for. These curves were obtained from
the Nichicon “PL” series of low ESR, high reliability electro-
DS012565-21
www.national.com

Related parts for lm2595sx-adj