ATMEGA8515L8AU

Manufacturer Part NumberATMEGA8515L8AU
DescriptionTQFP44
ManufacturerATMEL Corporation
ATMEGA8515L8AU datasheet
 

Specifications of ATMEGA8515L8AU

Date_code10+  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Page 141
142
Page 142
143
Page 143
144
Page 144
145
Page 145
146
Page 146
147
Page 147
148
Page 148
149
Page 149
150
Page 150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
Page 148/257

Download datasheet (3Mb)Embed
PrevNext
Parity Checker
Disabling the Receiver
Flushing the Receive Buffer
Asynchronous Data
Reception
ATmega8515(L)
148
The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type
of parity check to be performed (odd or even) is selected by the UPM0 bit. When
enabled, the parity checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (PE) Flag can then be read by software to check if the frame had a parity error.
The PE bit is set if the next character that can be read from the receive buffer had a par-
ity error when received and the parity checking was enabled at that point (UPM1 = 1).
This bit is valid until the receive buffer (UDR) is read.
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXEN is set to zero)
the Receiver will no longer override the normal function of the RxD port pin. The
Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in
the buffer will be lost
The Receiver buffer FIFO will be flushed when the Receiver is disabled (i.e., the buffer
will be emptied of its contents). Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDR I/O loca-
tion until the RXC Flag is cleared. The following code example shows how to flush the
receive buffer.
(1)
Assembly Code Example
USART_Flush:
sbis UCSRA, RXC
ret
in
r16, UDR
rjmp USART_Flush
(1)
C Code Example
void USART_Flush( void )
{
unsigned char dummy;
while ( UCSRA & (1<<RXC) ) dummy = UDR;
}
Note:
1. See “About Code Examples” on page 7.
The USART includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxD pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the Receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.
2512J–AVR–10/06