MT47H256M4BT-5E:A TR Micron Technology Inc, MT47H256M4BT-5E:A TR Datasheet

IC DDR2 SDRAM 1GBIT 5NS 92FBGA

MT47H256M4BT-5E:A TR

Manufacturer Part Number
MT47H256M4BT-5E:A TR
Description
IC DDR2 SDRAM 1GBIT 5NS 92FBGA
Manufacturer
Micron Technology Inc
Datasheet

Specifications of MT47H256M4BT-5E:A TR

Format - Memory
RAM
Memory Type
DDR2 SDRAM
Memory Size
1G (256M x 4)
Speed
5ns
Interface
Parallel
Voltage - Supply
1.7 V ~ 1.9 V
Operating Temperature
0°C ~ 85°C
Package / Case
92-FBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
557-1206-1
DDR2 SDRAM
MT47H256M4 – 32 Meg x 4 x 8 banks
MT47H128M8 – 16 Meg x 8 x 8 banks
MT47H64M16 – 8 Meg x 16 x 8 banks
Features
• V
• JEDEC-standard 1.8V I/O (SSTL_18-compatible)
• Differential data strobe (DQS, DQS#) option
• 4n-bit prefetch architecture
• Duplicate output strobe (RDQS) option for x8
• DLL to align DQ and DQS transitions with CK
• 8 internal banks for concurrent operation
• Programmable CAS latency (CL)
• Posted CAS additive latency (AL)
• WRITE latency = READ latency - 1
• Selectable burst lengths (BL): 4 or 8
• Adjustable data-output drive strength
• 64ms, 8192-cycle refresh
• On-die termination (ODT)
• Industrial temperature (IT) option
• RoHS-compliant
• Supports JEDEC clock jitter specification
PDF: 09005aef821ae8bf
1GbDDR2.pdf – Rev. T 02/10 EN
DD
= +1.8V ±0.1V, V
Products and specifications discussed herein are subject to change by Micron without notice.
DDQ
= +1.8V ±0.1V
t
CK
1
Options
• Configuration
• FBGA package (Pb-free) – x16
• FBGA package (Pb-free) – x4, x8
• FBGA package (Pb-free) – x4, x8
• FBGA package (lead solder) – x16
• FBGA package (lead solder) – x4, x8
• FBGA package (lead solder) – x4, x8
• Timing – cycle time
• Self refresh
• Operating temperature
• Revision
– 256 Meg x 4 (32 Meg x 4 x 8 banks)
– 128 Meg x 8 (16 Meg x 8 x 8 banks)
– 64 Meg x 16 (8 Meg x 16 x 8 banks)
– 84-ball FBGA (8mm x 12.5mm)
– 60-ball FBGA (8mm x 11.5mm)
– 60-ball FBGA (8mm x 10mm) Rev. H
– 84-ball FBGA (8mm x 12.5mm)
– 60-ball FBGA (8mm x 11.5mm)
– 60-ball FBGA (8mm x 10mm) Rev. H
– 1.875ns @ CL = 7 (DDR2-1066)
– 2.5ns @ CL = 5 (DDR2-800)
– 2.5ns @ CL = 6 (DDR2-800)
– 3.0ns @ CL = 4 (DDR2-667)
– 3.0ns @ CL = 5 (DDR2-667)
– 3.75ns @ CL = 4 (DDR2-533)
– Standard
– Low-power
– Commercial (0°C ≤ T
– Industrial (–40°C ≤ T
– Automotive (–40°C ≤ T
Note:
Rev. G, H
Rev. G
Rev. G, H
Rev. G
–40°C ≤ T
Micron Technology, Inc. reserves the right to change products or specifications without notice.
1. Not all options listed can be combined to
1
define an offered product. Use the Part
Catalog Search on
product offerings and availability.
1Gb: x4, x8, x16 DDR2 SDRAM
A
≤ 85°C)
C
C
≤ 85°C)
≤ 95°C;
C
© 2004 Micron Technology, Inc. All rights reserved.
, T
www.micron.com
A
≤ 105ºC)
Features
Marking
256M4
128M8
64M16
-187E
:G/:H
None
None
-25E
-37E
HW
HQ
-3E
HR
HV
-25
CF
AT
JN
-3
IT
for
L

Related parts for MT47H256M4BT-5E:A TR

MT47H256M4BT-5E:A TR Summary of contents

Page 1

DDR2 SDRAM MT47H256M4 – 32 Meg banks MT47H128M8 – 16 Meg banks MT47H64M16 – 8 Meg banks Features • +1.8V ±0.1V +1.8V ±0.1V DD ...

Page 2

Table 1: Key Timing Parameters Speed Grade -187E -25E -25 -3E -3 -37E Table 2: Addressing Parameter Configuration 32 Meg banks Refresh count Row address Bank address Column address PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 ...

Page 3

Figure 1: 1Gb DDR2 Part Numbers Example Part Number: MT47H128M8HQ-37E MT47H Configuration 256 Meg x 4 128 Meg Meg x 16 Package Pb-free 84-ball 8mm x 12.5mm FBGA 60-ball 8mm x 11.5mm FBGA 60-ball 8mm x 10.0mm ...

Page 4

Contents State Diagram .................................................................................................................................................. 9 Functional Description ................................................................................................................................... 10 Industrial Temperature .............................................................................................................................. 10 Automotive Temperature ........................................................................................................................... 11 General Notes ............................................................................................................................................ 11 Functional Block Diagrams ............................................................................................................................. 12 Ball Assignments and Descriptions ................................................................................................................. 15 Packaging ...................................................................................................................................................... 19 Package Dimensions .................................................................................................................................. 19 FBGA ...

Page 5

Off-Chip Driver (OCD) Impedance Calibration ............................................................................................ 81 Posted CAS Additive Latency (AL) ............................................................................................................... 81 Extended Mode Register 2 (EMR2) .................................................................................................................. 83 Extended Mode Register 3 (EMR3) .................................................................................................................. 84 Initialization .................................................................................................................................................. 85 ACTIVATE ...................................................................................................................................................... 88 READ ............................................................................................................................................................. 90 READ with Precharge ...

Page 6

List of Tables Table 1: Key Timing Parameters ...................................................................................................................... 2 Table 2: Addressing ......................................................................................................................................... 2 Table 3: FBGA 84-Ball – x16 and 60-Ball – x4, x8 Descriptions .......................................................................... 17 Table 4: Input Capacitance ............................................................................................................................ 22 Table 5: Absolute Maximum DC ...

Page 7

List of Figures Figure 1: 1Gb DDR2 Part Numbers ................................................................................................................... 3 Figure 2: Simplified State Diagram ................................................................................................................... 9 Figure 3: 256 Meg x 4 Functional Block Diagram ............................................................................................. 12 Figure 4: 128 Meg x 8 Functional Block Diagram ............................................................................................. 13 ...

Page 8

Figure 51: READ-to-PRECHARGE – ...................................................................................................... 95 Figure 52: Bank Read – Without Auto Precharge ............................................................................................. 97 Figure 53: Bank Read – with Auto Precharge ................................................................................................... 98 Figure 54: x4, x8 Data Output Timing – Figure 55: x16 ...

Page 9

State Diagram Figure 2: Simplified State Diagram OCD default Setting (E)MRS MRS EMRS WRITE Writing WRITE A Writing with auto precharge 1. This diagram provides the basic command flow not comprehensive and does not Note: PDF: 09005aef821ae8bf 1GbDDR2.pdf ...

Page 10

... A bidirectional data strobe (DQS, DQS#) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR2 SDRAM during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs. The x16 offering has two data strobes, one for the lower byte (LDQS, LDQS#) and one for the upper byte (UDQS, UDQS#). The DDR2 SDRAM operates from a differential clock (CK and CK#) ...

Page 11

Automotive Temperature The automotive temperature (AT) option, if offered, has two simultaneous require- ments: ambient temperature surrounding the device cannot be less than –40°C or greater than +105°C, and the case temperature cannot be less than –40°C or greater than ...

Page 12

... Functional Block Diagrams The DDR2 SDRAM is a high-speed CMOS, dynamic random access memory inter- nally configured as a multibank DRAM. Figure 3: 256 Meg x 4 Functional Block Diagram ODT CKE Control CK logic CK# CS# RAS# CAS# WE# Refresh Mode 14 counter registers address 17 14 A0–A13, Address 17 BA0– ...

Page 13

... Bank 7 Bank 7 Bank 6 Bank 6 Bank 5 Bank 5 Bank 4 Bank 4 Bank 3 Bank 3 Bank 2 Bank 2 Bank 1 Bank 1 Bank 0 Bank 0 14 row- Memory array address 16,384 latch (16,384 x 256 x 32) Row- and decoder MUX Sense amplifers 8,192 32 I/O gating DM mask logic Bank control 256 logic ...

Page 14

... Bank 7 Bank 7 Bank 6 Bank 6 Bank 5 Bank 5 Bank 4 Bank 4 Bank 3 Bank 3 Bank 2 Bank 2 Bank 1 Bank 1 Bank 0 Bank 0 13 row- Memory array address 8,192 (8,192 x 256 x 64) latch and 64 Read decoder latch Sense amplifier 16,384 64 I/O gating DM mask logic Bank control 256 logic ...

Page 15

Ball Assignments and Descriptions Figure 6: 60-Ball FBGA – x4, x8 Ball Assignments (Top View NF, DQ6 C V DDQ D NF, DQ4 E V DDL F G BA2 ...

Page 16

Figure 7: 84-Ball FBGA – x16 Ball Assignments (Top View DQ14 C V DDQ D DQ12 DQ6 G V DDQ H DQ4 J V DDL K L BA2 ...

Page 17

... READ/WRITE commands, to select one location out of the memory array in the respective bank. A10 sampled during a PRECHARGE com- mand determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected by BA[2:0] or all banks (A10 HIGH). The address inputs also provide the op-code during a LOAD MODE command ...

Page 18

Table 3: FBGA 84-Ball – x16 and 60-Ball – x4, x8 Descriptions (Continued) Symbol Type Description DQS, DQS# I/O Data strobe: Output with read data, input with write data for source synchronous oper- ation. Edge-aligned with read data, center-aligned with ...

Page 19

Packaging Package Dimensions Figure 8: 84-Ball FBGA Package (8mm x 12.5mm) – x16 Seating plane A 0.12 A 84X Ø0.45 Solder ball material: Pb-free – (SAC305) SnAgCu Pb – (Eutectic) SnPbAg Dimensions apply to solder balls post-reflow 9 on Ø0.35 ...

Page 20

Figure 9: 60-Ball FBGA Package (8mm x 11.5mm) – x4, x8 Seating plane A 0.12 A 60X Ø0.45 Solder ball material: Pb-free – (SAC305) SnAgCu Pb – (Eutectic) SnPbAg 9 8 Dimensions apply to solder balls post-reflow on Ø0.35 SMD ...

Page 21

Figure 10: 60-Ball FBGA (8mm x 10mm) – x4, x8 Seating Plane A 0.12 A 60X Ø0.45 Solder ball material: Pb-free – (SAC305) SnAgCu Pb – (Eutectic) SnPbAg Dimensions apply to solder balls post-reflow on Ø0.35 SMD ball pads. 8 ...

Page 22

FBGA Package Capacitance Table 4: Input Capacitance Parameter Input capacitance: CK, CK# Delta input capacitance: CK, CK# Input capacitance: Address balls, bank address balls, CS#, RAS#, CAS#, WE#, CKE, ODT Delta input capacitance: Address balls, bank address balls, CS#, RAS#, ...

Page 23

Electrical Specifications – Absolute Ratings Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other condi- tions outside those indicated in ...

Page 24

Table 6: Temperature Limits Parameter Storage temperature Operating temperature: commercial Operating temperature: industrial 1. MAX storage case temperature T Notes: 2. MAX operating case temperature T 3. Device functionality is not guaranteed if the device exceeds maximum T 4. Both ...

Page 25

Table 7: Thermal Impedance Substrate Die Revision Package (pcb 60-ball 2-layer 4-layer 84-ball 2-layer 4-layer 1 H 60-ball 2-layer 4-layer 84-ball 2-layer 4-layer 1. Thermal resistance data is based on a number of samples from multiple lots and ...

Page 26

Electrical Specifications – Specifications and Conditions DD Table 8: General I Parameters DD I Parameters RCD ( RRD ( x4/x8 (1KB) DD ...

Page 27

I Conditions DD7 The detailed timings are shown below for I Table 8 (page 26) conflict with pattern requirements of Table 9, then Table 9 require- ments take precedence. Table 9: I Timing Patterns (8-Bank Interleave READ Operation) DD7 Speed ...

Page 28

Table 10: DDR2 I Specifications and Conditions (Die Revisions E, G, and H) DD Notes: 1–7 apply to the entire table Parameter/Condition Operating one bank active- precharge current ...

Page 29

Table 10: DDR2 I Specifications and Conditions (Die Revisions E, G, and H) (Continued) DD Notes: 1–7 apply to the entire table Parameter/Condition Operating burst write current: All banks open, continuous burst writes ...

Page 30

Data bus consists of DQ, DM, DQS, DQS#, RDQS, RDQS#, LDQS, LDQS#, UDQS, and 5. Definitions for The following I PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 EN Electrical Specifications – I UDQS#. I values ...

Page 31

AC Timing Operating Specifications Table 11: AC Operating Specifications and Conditions Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ...

Page 32

Table 11: AC Operating Specifications and Conditions (Continued) Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ±0.1V ...

Page 33

Table 11: AC Operating Specifications and Conditions (Continued) Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ±0.1V ...

Page 34

Table 11: AC Operating Specifications and Conditions (Continued) Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ±0.1V ...

Page 35

Table 11: AC Operating Specifications and Conditions (Continued) Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ±0.1V ...

Page 36

Table 11: AC Operating Specifications and Conditions (Continued) Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ±0.1V ...

Page 37

Table 11: AC Operating Specifications and Conditions (Continued) Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table +1.8V ±0.1V ...

Page 38

All voltages are referenced to V Notes: 2. Tests for AC timing Outputs measured with equivalent load (see Figure 15 (page 47)). 4. AC timing and I 5. The AC and DC input level specifications are as ...

Page 39

The inputs to the DRAM must be aligned to the associated clock, that is, the actual clock 19. The DRAM output timing is aligned to the nominal or average clock. Most output param- 20. When DQS is used single-ended, ...

Page 40

V 32. For each input signal—not the group collectively. 33. There are two sets of values listed for command/address: 34. This is applicable to READ cycles only. WRITE cycles generally require additional time 35. READs and WRITEs with auto ...

Page 41

ODT turn-on time 47. ODT turn-off time 48. Half-clock output parameters must be derated by the actual 49. The -187E maximum limit is 2 × 50. Should use 8 AC and DC Operating Conditions Table 12: Recommended DC Operating ...

Page 42

ODT DC Electrical Characteristics Table 13: ODT DC Electrical Characteristics All voltages are referenced Parameter effective impedance value for 75Ω setting R TT EMR (A6, A2 effective impedance value for 150Ω setting R TT ...

Page 43

Input Electrical Characteristics and Operating Conditions Table 14: Input DC Logic Levels All voltages are referenced Parameter Input high (logic 1) voltage Input low (logic 0) voltage 1. V Note: Table 15: Input AC Logic Levels All ...

Page 44

Table 16: Differential Input Logic Levels All voltages referenced Parameter DC input signal voltage DC differential input voltage AC differential input voltage AC differential cross-point voltage Input midpoint voltage 1. V Notes ...

Page 45

Numbers in diagram reflect nominal values (V PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 EN Input Electrical Characteristics and Operating Conditions 45 Micron Technology, Inc. reserves the right to change products or specifications without notice. 1Gb: x4, x8, x16 ...

Page 46

Output Electrical Characteristics and Operating Conditions Table 17: Differential AC Output Parameters Parameter AC differential cross-point voltage AC differential voltage swing 1. The typical value of V Note: Figure 14: Differential Output Signal Levels Table 18: ...

Page 47

Table 19: Output Characteristics Parameter Output impedance Pull-up and pull-down mismatch Output slew rate 1. Absolute specifications: 0°C ≤ T Notes: 2. Impedance measurement conditions for output source DC current Mismatch is an absolute value between pull-up and ...

Page 48

Output Driver Characteristics Figure 16: Full Strength Pull-Down Characteristics 120 100 Table 20: Full Strength Pull-Down Current (mA) Voltage (V) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 ...

Page 49

Figure 17: Full Strength Pull-Up Characteristics 0 –20 –40 –60 –80 –100 –120 Table 21: Full Strength Pull-Up Current (mA) Voltage (V) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 ...

Page 50

Figure 18: Reduced Strength Pull-Down Characteristics Table 22: Reduced Strength Pull-Down Current (mA) Voltage (V) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 ...

Page 51

Figure 19: Reduced Strength Pull-Up Characteristics 0 –10 –20 –30 –40 –50 –60 –70 Table 23: Reduced Strength Pull-Up Current (mA) Voltage (V) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 ...

Page 52

Power and Ground Clamp Characteristics Power and ground clamps are provided on the following input-only balls: Address balls, bank address balls, CS#, RAS#, CAS#, WE#, ODT, and CKE. Table 24: Input Clamp Characteristics Voltage Across Clamp (V) 0.0 0.1 0.2 ...

Page 53

AC Overshoot/Undershoot Specification Some revisions will support the 0.9V maximum average amplitude instead of the 0.5V maximum average amplitude shown in Table 25 and Table 26. Table 25: Address and Control Balls Applies to address balls, bank address balls, CS#, ...

Page 54

Table 27: AC Input Test Conditions Parameter Input setup timing measurement reference level address balls, bank address balls, CS#, RAS#, CAS#, WE#, ODT, DM, UDM, LDM, and CKE Input hold timing measurement reference level address balls, bank address balls, CS#, ...

Page 55

Input Slew Rate Derating For all input signals, the total by adding the data sheet value, respectively. Example: t IS, the nominal slew rate for a rising signal, is defined as the slew rate between the last crossing of V ...

Page 56

Table 28: DDR2-400/533 Setup and Hold Time Derating Values ( Command/Address Slew Rate (V/ns) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.25 0.2 0.15 0.1 PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 EN ...

Page 57

Table 29: DDR2-667/800/1066 Setup and Hold Time Derating Values ( Command/ Address Slew 2.0 V/ns Rate (V/ns) Δ 4.0 +150 3.5 +143 3.0 +133 2.5 +120 2.0 +100 1.5 +67 1.0 0 0.9 –5 0.8 –13 0.7 –22 ...

Page 58

Figure 23: Nominal Slew Rate for CK# V DDQ V IH(AC)min V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max Setup slew rate falling signal Figure 24: Tangent Line for CK# V DDQ V IH(AC)min V IH(DC)min V REF(DC) V IL(DC)max ...

Page 59

Figure 25: Nominal Slew Rate for CK# V DDQ V IH(AC)min V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max V Figure 26: Tangent Line for V IH(AC)min V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max Hold slew rate rising signal ...

Page 60

Table 30: DDR2-400/533 DS, All units are shown in picoseconds DQ 4.0 V/ns 3.0 V/ns Slew Δ Δ Δ Δ Rate (V/ns 2.0 125 45 125 45 1 ...

Page 61

Table 31: DDR2-667/800/1066 All units are shown in picoseconds DQ 2.8 V/ns 2.4 V/ns Slew Δ Δ Δ Δ Rate (V/ns 2.0 100 63 100 63 1 1.0 ...

Page 62

Table 32: Single-Ended DQS Slew Rate Derating Values Using Reference points indicated in bold; Derating values are to be used with base 2.0 V/ns 1.8 V/ (V/ns 2.0 130 53 130 ...

Page 63

Table 34: Single-Ended DQS Slew Rate Fully Derated (DQS Reference points indicated in bold 2.0 V/ns 1.8 V/ (V/ns 2.0 355 341 355 341 1.5 364 340 364 ...

Page 64

Figure 27: Nominal Slew Rate for DQS 1 DQS DDQ V IH(AC)min V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max V 1. DQS, DQS# signals must be monotonic between V Note: Figure 28: Tangent Line for DQS 1 ...

Page 65

Figure 29: Nominal Slew Rate for DQS 1 DQS DDQ V IH(AC)min V IH(DC)min V REF(DC) V IL(DC)max V IL(AC)max V 1. DQS, DQS# signals must be monotonic between V Note: Figure 30: Tangent Line for DQS 1 ...

Page 66

Figure 31: AC Input Test Signal Waveform Command/Address Balls Logic levels V levels REF Figure 32: AC Input Test Signal Waveform for Data with DQS, DQS# (Differential) Logic levels V levels REF PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 EN ...

Page 67

Figure 33: AC Input Test Signal Waveform for Data with DQS (Single-Ended) Logic levels V levels REF Figure 34: AC Input Test Signal Waveform (Differential PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 EN DQS t DS ...

Page 68

Commands Truth Tables The following tables provide a quick reference of available DDR2 SDRAM commands, including CKE power-down modes and bank-to-bank commands. Table 36: Truth Table – DDR2 Commands Notes: 1–3 apply to the entire table Previous Function Cycle LOAD ...

Page 69

Bank addresses (BA) determine which bank operated upon. BA during a LOAD 7. SELF REFRESH exit is asynchronous. 8. Burst reads or writes cannot be terminated or interrupted. See Figure 48 9. ...

Page 70

The following states must not be interrupted by any executable command (DESELECT or 6. All states and sequences not shown are illegal or reserved. 7. Not bank-specific; requires that all banks are idle and bursts are not in progress. ...

Page 71

Table 38: Truth Table – Current State Bank n – Command to Bank m Notes: 1–6 apply to the entire table Current State CS# RAS# Any Idle X X Row L L active, active ...

Page 72

REFRESH and LOAD MODE commands may only be issued when all banks are idle. 5. Not used. 6. All states and sequences not shown are illegal or reserved. 7. READs or WRITEs listed in the Command/Action column include READs ...

Page 73

... AL clock cycles. Input data appearing on the DQ is written to the memory array subject to the DM input logic level appearing coincident with the data given DM signal is registered LOW, the corresponding data will be written to memory; if the DM signal is registered HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location (see Figure 65 (page 110)) ...

Page 74

PRECHARGE The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row activation a specified time ( concurrent auto precharge, where ...

Page 75

Burst Length Burst length is defined by bits M0–M2, as shown in Figure 35. Read and write accesses to the DDR2 SDRAM are burst-oriented, with the burst length being programmable to either four or eight. The burst length determines the ...

Page 76

Burst Type Accesses within a given burst may be programmed to be either sequential or inter- leaved. The burst type is selected via bit M3, as shown in Figure 35. The ordering of accesses within a burst is determined by ...

Page 77

Write Recovery Write recovery (WR) time is defined by bits M9–M11, as shown in Figure 35 (page 75). The WR register is used by the DDR2 SDRAM during WRITE with auto precharge opera- tion. During WRITE with auto precharge operation, ...

Page 78

CAS Latency (CL) The CAS latency (CL) is defined by bits M4–M6, as shown in Figure 35 (page 75 the delay, in clock cycles, between the registration of a READ command and the availa- bility of the first ...

Page 79

... Figure 37. The EMR is programmed via the LM command and will retain the stored information until it is programmed again or the device loses power. Reprogramming the EMR will not alter the contents of the memory array, provided it is performed correctly. ...

Page 80

DLL Enable/Disable The DLL may be enabled or disabled by programming bit E0 during the LM command, as shown in Figure 37 (page 79). These specifications are applicable when the DLL is enabled for normal operation. DLL enable is required ...

Page 81

On-Die Termination (ODT) ODT effective resistance, R Figure 37 (page 79). The ODT feature is designed to improve signal integrity of the mem- ory channel by allowing the DDR2 SDRAM controller to independently turn on/off ODT for any or all ...

Page 82

Figure 38: READ Latency T0 T1 CK# CK Command ACTIVE n READ n DQS, DQS# t RCD (MIN) DQ Notes Shown with nominal Figure 39: WRITE Latency ...

Page 83

... LM command and will retain the stored information until it is program- med again or until the device loses power. Reprogramming the EMR will not alter the contents of the memory array, provided it is performed correctly. Bit E7 (A7) must be programmed as “1” to provide a faster refresh rate on IT and AT ...

Page 84

... EMR3 is programmed via the LM command and will retain the stored information until it is programmed again or until the device loses power. Reprogramming the EMR will not alter the contents of the memory array, provided it is performed correctly. EMR3 must be loaded when all banks are idle and no bursts are in progress, and the controller must wait the specified time tion ...

Page 85

Initialization Figure 42: DDR2 Power-Up and Initialization DDR2 SDRAM must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in unde- fined operation. Figure 42 illustrates, and the notes outline, the sequence ...

Page 86

Applying power; if CKE is maintained below 0.2 × V Notes: 2. CKE requires LVCMOS input levels prior to state T0 to ensure DQs are High-Z during de- 3. For a minimum of 200µs after stable power and clock ...

Page 87

Issue two or more REFRESH commands. 11. Issue a LOAD MODE command to the MR with LOW initialize device operation 12. Issue a LOAD MODE command to the EMR to enable OCD default by setting bits ...

Page 88

ACTIVATE Before any READ or WRITE commands can be issued to a bank within the DDR2 SDRAM, a row in that bank must be opened (activated), even when additive latency is used. This is accomplished via the ACTIVATE command, which ...

Page 89

Figure 44: Multibank Activate Restriction T0 T1 CK# CK Command ACT READ Row Col Address Bank address Bank a Bank a t RRD (MIN) Note: 1. DDR2-533 (-37E x8), PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/ ...

Page 90

READ READ bursts are initiated with a READ command. The starting column and bank ad- dresses are provided with the READ command, and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the ...

Page 91

Figure 45: READ Latency CK# Command Address DQS, DQS# CK# Command Address DQS, DQS# CK# Command Address DQS, DQS data-out from column n. Notes Three subsequent elements of data-out appear in ...

Page 92

Figure 46: Consecutive READ Bursts CK# Command Address DQS, DQS# CK# Command Address DQS, DQS ( data-out from column n (or column b). Notes Three subsequent elements of data-out appear ...

Page 93

Figure 47: Nonconsecutive READ Bursts CK# Command Address DQS, DQS# CK# Command Address DQS, DQS ( data-out from column n (or column b). Notes Three subsequent elements of data-out appear ...

Page 94

Figure 48: READ Interrupted by READ T0 T1 CK# CK READ 1 NOP 2 Command Valid 4 Address A10 DQS, DQS ( CCD required; auto precharge must be disabled ...

Page 95

Examples of READ-to-PRECHARGE for are shown in Figure 50 and in Figure 51 for The delay from READ-to-PRECHARGE period to the same bank ...

Page 96

READ with Auto Precharge If A10 is high when a READ command is issued, the READ with auto precharge function is engaged. The DDR2 SDRAM starts an auto precharge operation on the rising clock edge that (BL/2) ...

Page 97

Figure 52: Bank Read – Without Auto Precharge T0 T1 CK# CK CKE NOP 1 Command ACT RA Address A10 RA Bank address Bank x DM Case (MIN) and t DQSCK (MIN) DQS, DQS Case ...

Page 98

Figure 53: Bank Read – with Auto Precharge CKE Command 1 NOP 1 ACT Address RA A10 RA Bank address Bank x DM Case (MIN) and t DQSCK (MIN) DQS, DQS# ...

Page 99

Figure 54: x4, x8 Data Output Timing – CK# CK DQS# DQS 3 DQ (last data valid (first data no longer valid) DQ (last data valid) DQ ...

Page 100

Figure 55: x16 Data Output Timing – CK# CK LDSQ# LDQS 3 DQ (last data valid (first data no longer valid (last data valid) ...

Page 101

The data valid window is derived for each DQS transition and is 7. DQ8, DQ9, DQ10, D11, DQ12, DQ13, DQ14, or DQ15. Figure 56: Data Output Timing – CK# CK DQS#/DQS or LDQS#/LDQS/UDQ#/UDQS 3 DQ (last ...

Page 102

WRITE diagrams show the nominal case, and where the two extreme cases ( [MIN] and (page 103) shows the nominal case and the extremes of tion of a burst, assuming no other commands have been initiated, the DQ will ...

Page 103

Figure 57: Write Burst Command Address t DQSS (NOM) DQS, DQS# t DQSS (MIN) DQS, DQS# t DQSS (MAX) DQS, DQS# 1. Subsequent rising DQS signals must align to the clock within Notes data-in for column ...

Page 104

Figure 58: Consecutive WRITE-to-WRITE Command Address t DQSS (NOM) DQS, DQS# 1. Subsequent rising DQS signals must align to the clock within Notes etc. = data-in for column b, etc. 3. Three subsequent elements of data-in are ...

Page 105

Figure 60: WRITE Interrupted by WRITE T0 T1 CK# CK WRITE 1 a NOP 2 Command Valid 5 Address A10 DQS, DQS 2-clock requirement required and auto precharge must be disabled (A10 ...

Page 106

Figure 61: WRITE-to-READ T0 T1 CK# CK Command WRITE NOP Bank a, Address Col b WL ± t DQSS t DQSS (NOM) DQS, DQS DQSS (MIN DQSS DQS, DQS DQSS (MAX) ...

Page 107

Figure 62: WRITE-to-PRECHARGE T0 T1 CK# CK Command WRITE NOP Bank a, Address Col b t DQSS (NOM DQSS DQS# DQS DQSS (MIN DQSS DQS# DQS DQSS (MAX) ...

Page 108

Figure 63: Bank Write – Without Auto Precharge CKE NOP 1 Command ACT RA Address A10 RA Bank select Bank x DQS, DQS Notes: 1. NOP commands are shown for ease ...

Page 109

Figure 64: Bank Write – with Auto Precharge CKE NOP 1 Command ACT RA Address A10 RA Bank select Bank x DQS, DQS NOP commands are shown for ease of ...

Page 110

Figure 65: WRITE – DM Operation CK CKE NOP 1 NOP 1 Command ACT Address RA A10 RA Bank select Bank x DQS, DQS Notes: 1. NOP commands are shown for ...

Page 111

Figure 66: Data Input Timing CK# CK DQS DQS Notes Subsequent rising DQS signals must align to the clock within 4. WRITE command issued at T0. 5. For x16, LDQS controls the lower byte and ...

Page 112

REFRESH The commercial temperature DDR2 SDRAM requires REFRESH cycles at an average in- terval of 7.8125µs (MAX) and all rows in all banks must be refreshed at least once every 64ms. The refresh period begins when the REFRESH command is ...

Page 113

SELF REFRESH The SELF REFRESH command is initiated when CKE is LOW. The differential clock should remain stable and meet refresh mode. The procedure for exiting self refresh requires a sequence of commands. First, the differential clock must be stable ...

Page 114

Figure 68: Self Refresh CKE 1 Command NOP REF ODT 6 t AOFD/ t AOFPD 6 Address DQS#, DQS Enter self refresh mode (synchronous) 1. Clock ...

Page 115

Power-Down Mode DDR2 SDRAM supports multiple power-down modes that allow significant power sav- ings over normal operating modes. CKE is used to enter and exit different power-down modes. Power-down entry and exit timings are shown in Figure 69 (page 116). ...

Page 116

Figure 69: Power-Down Valid 1 Command NOP CKE Address Valid DQS, DQS Enter power-down mode this command is a PRECHARGE (or if the device is already in the idle ...

Page 117

Table 43: Truth Table – CKE Notes 1–4 apply to the entire table Previous Cycle Current State ( Power-down L L Self refresh L L Bank(s) active H All banks idle CKE (n) is ...

Page 118

Figure 70: READ-to-Power-Down or Self Refresh Entry T0 T1 CK# CK Command READ NOP CKE Address Valid A10 DQS, DQS the example shown, READ burst completes at T5; earliest power-down or self refresh Notes: 2. Power-down or ...

Page 119

Figure 72: WRITE-to-Power-Down or Self Refresh Entry T0 T1 CK# CK Command WRITE NOP CKE Address Valid A10 DQS, DQS Power-down or self refresh entry may occur after the WRITE burst completes. Note: Figure 73: ...

Page 120

Figure 74: REFRESH Command-to-Power-Down Entry CK# Command CKE 1. The earliest precharge power-down entry may occur is at T2, which is 1 × Note: Figure 75: ACTIVATE Command-to-Power-Down Entry CK# Command Address CKE 1. The earliest active power-down entry may ...

Page 121

Figure 76: PRECHARGE Command-to-Power-Down Entry Command Address 1. The earliest precharge power-down entry may occur is at T2, which is 1 × Note: Figure 77: LOAD MODE Command-to-Power-Down Entry CK# Command Address CKE 1. Valid address for LM command includes ...

Page 122

Precharge Power-Down Clock Frequency Change When the DDR2 SDRAM is in precharge power-down mode, ODT must be turned off and CKE must logic LOW level. A minimum of two differential clock cycles must pass after CKE goes ...

Page 123

... RESET with the exception of CKE. If CKE asynchronously drops LOW during any valid operation (including a READ or WRITE burst), the memory controller must satisfy the timing parameter turning off the clocks. Stable clocks must exist at the CK, CK# inputs of the DRAM be- fore CKE is raised HIGH, at which time the normal initialization sequence must occur (see Initialization) ...

Page 124

Figure 79: RESET Function T0 T1 CK# CK CKE ODT NOP 2 Command READ DM 3 Col n Address A10 Bank address Bank a High-Z DQS 3 High Notes: 2. Either NOP or DESELECT ...

Page 125

ODT Timing Once a 12ns delay ( bled via the EMR LOAD MODE command, ODT can be accessed under two timing categories. ODT will operate either in synchronous mode or asynchronous mode, de- pending on the state of CKE. ODT ...

Page 126

Figure 80: ODT Timing for Entering and Exiting Power-Down Mode Synchronous t First CKE latched LOW CKE Any mode except self refresh mode Applicable modes t t AOND/ AOFD Applicable timing parameters PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/10 EN ...

Page 127

MRS Command to ODT Update Delay During normal operation, the value of the effective termination resistance can be changed with an EMRS set command. Figure 81: Timing for MRS Command to ODT Update Delay Command CK# ODT 2 Internal R ...

Page 128

Figure 83: ODT Timing for Slow-Exit or Precharge Power-Down Modes CK# CK Command Address CKE ODT R TT Figure 84: ODT Turn-Off Timings When Entering Power-Down Mode CK# CK Command CKE ODT R ODT R PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. ...

Page 129

Figure 85: ODT Turn-On Timing When Entering Power-Down Mode CK# CK Command CKE ODT R ODT R PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/ NOP NOP NOP TT TT Transitioning R TT 129 1Gb: x4, x8, ...

Page 130

Figure 86: ODT Turn-Off Timing When Exiting Power-Down Mode T0 T1 CK# CK Command NOP NOP CKE t CKE (MIN) ODT R TT ODT R TT PDF: 09005aef821ae8bf 1GbDDR2.pdf – Rev. T 02/ Ta0 NOP NOP ...

Page 131

Figure 87: ODT Turn-On Timing When Exiting Power-Down Mode T0 T1 CK# CK Command NOP NOP CKE t CKE (MIN) ODT R TT ODT R TT 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 www.micron.com/productsupport Customer ...

Related keywords