LT1510CS8 Linear Technology, LT1510CS8 Datasheet - Page 14

IC BATT CHARGER CONST V/I 8SOIC

LT1510CS8

Manufacturer Part Number
LT1510CS8
Description
IC BATT CHARGER CONST V/I 8SOIC
Manufacturer
Linear Technology
Datasheet

Specifications of LT1510CS8

Function
Charge Management
Battery Type
Li-Ion, NiCd, NiMH
Voltage - Supply
6.2 V ~ 28 V
Operating Temperature
0°C ~ 70°C
Mounting Type
Surface Mount
Package / Case
8-SOIC (0.154", 3.90mm Width)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LT1510CS8
Manufacturer:
LT
Quantity:
10 000
Part Number:
LT1510CS8
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1510CS8#30390
Manufacturer:
LT
Quantity:
10 000
Part Number:
LT1510CS8#TRPBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
APPLICATIONS
LT1510/LT1510-5
low thermal resistance system and to act as a ground
plane for reduced EMI.
Higher Duty Cycle for the LT1510 Battery Charger
Maximum duty cycle for the LT1510 is typically 90% but
this may be too low for some applications. For example, if
an 18V 3% adapter is used to charge ten NiMH cells, the
charger must put out 15V maximum. A total of 1.6V is lost
in the input diode, switch resistance, inductor resistance
and parasitics so the required duty cycle is 15/16.4 =
91.4%. As it turns out, duty cycle can be extended to 93%
by restricting boost voltage to 5V instead of using V
is normally done. This lower boost voltage V
8) also reduces power dissipation in the LT1510, so it is a
win-win decision.
Even Lower Dropout
For even lower dropout and/or reducing heat on the board,
the input diode D3 (Figures 2 and 6) should be replaced
with a FET. It is pretty straightforward to connect a
P-channel FET across the input diode and connect its gate
to the battery so that the FET commutates off when the
input goes low. The problem is that the gate must be
pumped low so that the FET is fully turned on even when
the input is only a volt or two above the battery voltage.
Also there is a turn off speed issue. The FET should turn off
instantly when the input is dead shorted to avoid large
current surges form the battery back through the charger
into the FET. Gate capacitance slows turn off, so a small
P-FET (Q2) discharges the gate capacitance quickly in the
14
90
80
70
60
50
40
30
20
Figure 10. LT1510 Lead temperature
0
I
V
V
V
T
NOTE: PEAK DIE TEMPERATURE WILL BE
ABOUT 10 C HIGHER THAN LEAD TEMPER-
ATURE AT 1.3A CHARGING CURRENT
CHRG
A
IN
BAT
BOOST
= 25 C
= 16V
5
= 8.4V
U
= 1.3A
= V
10
BAT
BOARD AREA (IN
INFORMATION
U
15
4-LAYER BOARD
2-LAYER BOARD
20
2
25
)
W
30
1510 F09
35
X
(see Figure
U
BAT
as
event of an input short. The body diode of Q2 creates the
necessary pumping action to keep the gate of Q1 low
during normal operation (see Figure 11).
Layout Considerations
Switch rise and fall times are under 10ns for maximum
efficiency. To prevent radiation, the catch diode, SW pin
and input bypass capacitor leads should be kept as short
as possible. A ground plane should be used under the
switching circuitry to prevent interplane coupling and to
act as a thermal spreading path. All ground pins should be
connected to expand traces for low thermal resistance.
The fast-switching high current ground path including the
switch, catch diode and input capacitor should be kept
very short. Catch diode and input capacitor should be
close to the chip and terminated to the same point. This
path contains nanosecond rise and fall times with several
amps of current. The other paths contain only DC and /or
200kHz triwave and are less critical. Figure 13 shows
critical path layout. Figure 12 indicates the high speed,
high current switching path.
V
V
IN
IN
Figure 12. High Speed Switching Path
Q1
Figure 11. Replacing the Input Diode
C
Q1: Si4435DY
Q2: TP0610L
IN
R
50k
X
Q2
CIRCULATING
FREQUENCY
SWITCH NODE
3V TO 6V
PATH
HIGH
D1
V
X
HIGH DUTY CYCLE
L1
+
CONNECTION
D2
C3
C
10 F
X
L1
SW
BOOST
SENSE
LT1510
+
BAT
V
CC
C
OUT
V
BAT
1510 F10
BAT
1510 F12
V
BAT

Related parts for LT1510CS8