ADM1032ARM-1 ON Semiconductor, ADM1032ARM-1 Datasheet - Page 7

no-image

ADM1032ARM-1

Manufacturer Part Number
ADM1032ARM-1
Description
IC TEMP MONITOR 108 DEF 8-MSOP
Manufacturer
ON Semiconductor
Datasheet

Specifications of ADM1032ARM-1

Rohs Status
RoHS non-compliant
Function
Temp Monitoring System (Sensor)
Topology
ADC, Comparator, Multiplexer, Register Bank
Sensor Type
External & Internal
Sensing Temperature
0°C ~ 100°C, External Sensor
Output Type
SMBus™
Output Alarm
Yes
Output Fan
Yes
Voltage - Supply
3 V ~ 5.5 V
Operating Temperature
0°C ~ 100°C
Mounting Type
Surface Mount
Package / Case
8-MSOP, Micro8™, 8-uMAX, 8-uSOP,

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADM1032ARM-1
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Functional Description
and overtemperature alarm. When the ADM1032 is
operating normally, the on−board A/D converter operates in
a free running mode. The analog input multiplexer
alternately selects either the on−chip temperature sensor to
measure its local temperature or the remote temperature
sensor. These signals are digitized by the ADC, and the
results are stored in the local and remote temperature value
registers.
remote, high, low, and THERM temperature limits stored in
nine on−chip registers. Out−of−limit comparisons generate
flags that are stored in the status register, and one or more
out−of−limit results cause the ALERT output to pull low.
Exceeding THERM temperature limits causes the THERM
output to assert low.
controlled and configured, via the serial SMBus. The
contents of any register can also be read back via the SMBus.
Measurement Method
the negative temperature coefficient of a diode, or the
base−emitter voltage of a transistor, operated at constant
current. Unfortunately, this technique requires calibration to
null out the effect of the absolute value of V
from device to device.
change in V
currents.
The ADM1032 is a local and remote temperature sensor
The measurement results are compared with local and
The limit registers can be programmed, and the device
Control and configuration functions consist of:
A simple method of measuring temperature is to exploit
The technique used in the ADM1032 is to measure the
Switching the device between normal operation and
standby mode.
Masking or enabling the ALERT output.
Selecting the conversion rate.
BE
when the device is operated at two different
TRANSISTOR
SENSING
REMOTE
CAPACITOR C1 IS OPTIONAL AND IT SHOULD ONLY BE USED IN VERY NOISY ENVIRONMENTS. C1 = 1000pF MAX.
C1
D+
D–
Figure 12. Input Signal Conditioning
BE
I
, which varies
http://onsemi.com
DIODE
BIAS
N × I
I
BIAS
7
LOW−PASS FILTER
K is Boltzmann’s constant (1.38 x 10
q is the charge on the electron (1.6 x 10
T is the absolute temperature in Kelvins.
N is the ratio of the two currents.
n
The ADM1032 is trimmed for an ideality factor of 1.008.
measure the output of an external temperature sensor.
Figure 12 shows the external sensor as a substrate transistor,
provided
microprocessors, but it could equally well be a discrete
transistor. If a discrete transistor is used, the collector is not
grounded and should be linked to the base. To prevent
ground noise interfering with the measurement, the more
negative terminal of the sensor is not referenced to ground
but is biased above ground by an internal diode at the D−
input. If the sensor is operating in a noisy environment, C1
can optionally be added as a noise filter. Its value should be
no more than 1000 pF. See the Layout Considerations
section for more information on C1.
operating currents of I and N x I. The resulting waveform is
passed through a 65 kHz low−pass filter to remove noise,
and then to a chopper−stabilized amplifier that performs the
functions of amplification and rectification of the waveform
to produce a dc voltage proportional to DV
is measured by the ADC to give a temperature output in twos
complement format. To further reduce the effects of noise,
digital filtering is performed by averaging the results of 16
measurement cycles.
temperature sensor is performed in a similar manner.
f
C
f
= 65kHz
This is given by:
Figure 12 shows the input signal conditioning used to
To measure DV
Signal conditioning and measurement of the internal
is the ideality factor of the thermal diode.
where:
V
DD
for
DV
BE
temperature
BE
+ n
, the sensor is switched between the
f
KT
q
In ( N )
monitoring
TO ADC
V
V
OUT+
OUT–
–23
–19
).
BE
Coulombs).
. This voltage
on
(eq. 1)
some

Related parts for ADM1032ARM-1