HCPL-3180-360E Avago Technologies US Inc., HCPL-3180-360E Datasheet - Page 13

OPTOCOUPLER DRV 2.5A VDE 8SMD GW

HCPL-3180-360E

Manufacturer Part Number
HCPL-3180-360E
Description
OPTOCOUPLER DRV 2.5A VDE 8SMD GW
Manufacturer
Avago Technologies US Inc.
Datasheet

Specifications of HCPL-3180-360E

Voltage - Isolation
3750Vrms
Number Of Channels
1, Unidirectional
Current - Output / Channel
2.5A
Propagation Delay High - Low @ If
150ns @ 10mA
Current - Dc Forward (if)
16mA
Input Type
DC
Output Type
Gate Driver
Mounting Type
Surface Mount
Package / Case
8-SMD Gull Wing
No. Of Channels
1
Optocoupler Output Type
Gate Drive
Input Current
16mA
Output Voltage
20V
Opto Case Style
SMD
No. Of Pins
8
Propagation Delay Low-high
0.2µs
Isolation Voltage
3.75kV
Number Of Elements
1
Forward Voltage
1.8V
Forward Current
25mA
Package Type
PDIP SMD
Operating Temp Range
-40C to 100C
Power Dissipation
295mW
Propagation Delay Time
200ns
Pin Count
8
Mounting
Surface Mount
Reverse Breakdown Voltage
5V
Operating Temperature Classification
Industrial
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HCPL-3180-360E
Manufacturer:
AVAGO
Quantity:
10 000
Part Number:
HCPL-3180-360E
Manufacturer:
AVAGO/安华高
Quantity:
20 000
Thermal Model
(Discussion applies to HCPL-3180)
The steady state thermal model for the HCPL-3180 is
shown in Figure 27. The thermal resistance values given
in this model can be used to calculate the temperatures
at each node for a given operating condition. As shown
by the model, all heat generated flows through q
raises the case temperature TC accordingly. The value of
q
is, therefore, determined by the designer. The value of
For example, given P
P
T
placement (q
13
JE
CA
O
= 250 mW, T
and T
depends on the conditions of the board design and
θ
T
Figure 27. Thermal model.
JD
T
T
T
T
T
LC
JE
JD
JE
JD
JE
JD
should be limited to +125 °C based on the board layout and part
= 467 °C/W
= P
= P
CA
= P
= P
= P
= 45 mW * 339°C/W + 250 mW * 140°C/W + 70°C
= 120°C
= P
= 45 mW * 140°C/W + 250 mW * 194°C/W + 70°C
= 125°C
E
A
) specific to the application.
E
* (q
T
E
E
E
E
= +70 °C and q
*
JE
* (256°C/W + q
* (57°C/W + q
* 339°C/W + P
* 140°C/W + P
[
LC
θ
E
q
LD
//q
LC
= 45 mW,
= 442 °C/W
q
+ q
T
LD
LC
C
θ
+ q
DC
* q
CA
T
A
= 83 °C/W*
DC
+ q
DC
CA
θ
CA
T
D
D
DC
JD
CA
) + q
LD
) + P
* 140°C/W + T
* 194°C/W + T
= +83 °C/W:
= 126 °C/W
) + P
+ q
CA
D
CA
D
) + P
* (111°C/W + q
]
* (57°C/W + q
+ P
D
D *
*
CA
A
A
[
(q
which
q
LC
T
T
T
θ
θ
θ
θ
LC
JD
C
JE
LC
LD
DC
CA
CA
//q
q
= LED JUNCTION TEMPERATURE
= DETECTOR IC JUNCTION TEMPERATURE
= CASE TEMPERATURE MEASURED AT THE
= LED-TO-CASE THERMAL RESISTANCE
= LED-TO-DETECTOR THERMAL RESISTANCE
= DETECTOR-TO-CASE THERMAL RESISTANCE
= CASE-TO-AMBIENT THERMAL RESISTANCE
+ q
WILL DEPEND ON THE BOARD DESIGN AND
THE PLACEMENT OF THE PART.
CA
CA
LC
CENTER OF THE PACKAGE BOTTOM
LD
DC
) + T
) + T
* q
+ q
q
ments using a 2.5 x 2.5 inch PC board, with small traces
(no ground plane), a single HCPL- 3180 soldered into the
center of the board and still air. The absolute maximum
power dissipation derating specifications assume a q
value of +83 °C/W. From the thermal mode in Figure 27,
the LED and detector IC junction temperatures can be
expressed as:
DC
+ q
CA
A
A
DC
LD
= +83 °C/W was obtained from thermal measure-
) + q
+ q
CA
CA
]
) + T
+ T
A
A
CA

Related parts for HCPL-3180-360E