ISL6526AEVAL2 Intersil, ISL6526AEVAL2 Datasheet - Page 7

no-image

ISL6526AEVAL2

Manufacturer Part Number
ISL6526AEVAL2
Description
EVALUATION BOARD 2 ISL6526A
Manufacturer
Intersil
Datasheet

Specifications of ISL6526AEVAL2

Main Purpose
DC/DC, Step Down
Outputs And Type
1, Non-Isolated
Voltage - Output
2.5V
Current - Output
5A
Voltage - Input
3.3 ~ 5V
Regulator Topology
Buck
Frequency - Switching
600kHz
Board Type
Fully Populated
Utilized Ic / Part
ISL6526A
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Power - Output
-
ENABLE
This pin is the open-collector enable pin. Pulling this pin to a
level below 0.8V will disable the controller. Disabling the
ISL6526, ISL6526A causes the oscillator to stop, the LGATE
and UGATE outputs to be held low, and the soft-start
circuitry to re-arm.
CT1 and CT2
These pins are the connections for the external charge
pump capacitor. A minimum of a 0.1µF ceramic capacitor is
recommended for proper operation of the IC.
CPVOUT
This pin represents the output of the charge pump. The
voltage at this pin is the bias voltage for the IC. Connect a
decoupling capacitor from this pin to ground. The value of the
decoupling capacitor should be at least 10x the value of the
charge pump capacitor. This pin may be tied to the bootstrap
circuit as the source for creating the BOOT voltage.
CPGND
This pin represents the signal and power ground for the
charge pump. Tie this pin to the ground island/plane through
the lowest impedance connection available.
Functional Description
Initialization
The ISL6526, ISL6526A automatically initialize upon receipt
of power. Special sequencing of the input supplies is not
necessary. The Power-On Reset (POR) function continually
monitors the output voltage of the charge pump. During
POR, the charge pump operates on a free running oscillator.
Once the POR level is reached, the charge pump oscillator
is synched to the PWM oscillator. The POR function also
initiates the soft-start operation after the charge pump output
voltage exceeds its POR threshold.
Soft-Start
The POR function initiates the digital soft-start sequence.
The PWM error amplifier reference is clamped to a level
proportional to the soft-start voltage. As the soft-start voltage
slews up, the PWM comparator generates PHASE pulses of
increasing width that charge the output capacitor(s). This
method provides a rapid and controlled output voltage rise.
The soft-start sequence typically takes about 6.5ms.
Figure 1 shows the soft-start sequence for a typical application.
At t0, the +3.3V VCC voltage starts to ramp-up. At time t1, the
Charge Pump begins operation and the +5V CPVOUT IC bias
voltage starts to ramp-up. Once the voltage on CPVOUT
crosses the POR threshold at time t2, the output begins the
soft-start sequence. The triangle waveform from the PWM
oscillator is compared to the rising error amplifier output
voltage. As the error amplifier voltage increases, the pulse
width on the UGATE pin increases to reach the steady-state
duty cycle at time t3.
7
ISL6526, ISL6526A
Shoot-Through Protection
A shoot-through condition occurs when both the upper
MOSFET and lower MOSFET are turned on simultaneously,
effectively shorting the input voltage to ground. To protect
the regulator from a shoot-through condition, the ISL6526,
ISL6526A incorporate specialized circuitry which insures
that the complementary MOSFETs are not ON
simultaneously.
The adaptive shoot-through protection utilized by the
ISL6526, ISL6526A look at the lower gate drive pin, LGATE,
and the upper gate drive pin, UGATE, to determine whether
a MOSFET is ON or OFF. If the voltage from UGATE or from
LGATE to GND is less than 0.8V, then the respective
MOSFET is defined as being OFF and the complementary
MOSFET is turned ON. This method of shoot-through
protection allows the regulator to sink or source current.
Since the voltage of the lower MOSFET gate and the upper
MOSFET gate are being measured to determine the state of
the MOSFET, the designer is encouraged to consider the
repercussions of introducing external components between
the gate drivers and their respective MOSFET gates before
actually implementing such measures. Doing so may
interfere with the shoot-through protection.
Output Voltage Selection
The output voltage can be programmed to any level between
V
divider is used to scale the output voltage relative to the
reference voltage and feed it back to the inverting input of
the error amplifier; see Figure 2. However, since the value of
R1 affects the values of the rest of the compensation
components, it is advisable to keep its value less than 5kΩ.
R4 can be calculated based Equation 2:
If the output voltage desired is 0.8V, simply route the output
back to the FB pin through R1, but do not populate R4.
R4
IN
0V
and the internal reference, 0.8V. An external resistor
=
------------------------------------- -
V
OUT1
R1
(1V/DIV)
×
0.8V
FIGURE 1. SOFT-START INTERVAL
t0
0.8V
t1
t2
TIME
t3
CPVOUT (5V)
V
VCC (3.3V)
OUT
(2.50V)
November 24, 2008
FN9055.10
(EQ. 2)

Related parts for ISL6526AEVAL2