C8051F120DK Silicon Laboratories Inc, C8051F120DK Datasheet - Page 75

DEVKIT-F120/21/22/23/24/25/26/27

C8051F120DK

Manufacturer Part Number
C8051F120DK
Description
DEVKIT-F120/21/22/23/24/25/26/27
Manufacturer
Silicon Laboratories Inc
Type
MCUr
Datasheet

Specifications of C8051F120DK

Contents
Evaluation Board, Power Supply, USB Cables, Adapter and Documentation
Processor To Be Evaluated
C8051F12x and C8051F13x
Interface Type
USB
Silicon Manufacturer
Silicon Labs
Core Architecture
8051
Silicon Core Number
C8051F120
Silicon Family Name
C8051F12x
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
For Use With/related Products
C8051F120, 121, 122, 123, 124, 125, 126, 127
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1224

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F120DK
Manufacturer:
SiliconL
Quantity:
4
Part Number:
C8051F120DK
Manufacturer:
*
Quantity:
1
6.2.
ADC0 has a maximum conversion speed of 100 ksps. The ADC0 conversion clock is derived from the sys-
tem clock divided by the value held in the ADCSC bits of register ADC0CF.
6.2.1. Starting a Conversion
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start
of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. Conversions may be initiated by:
The AD0BUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete.
The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the AD0INT interrupt flag
(ADC0CN.5). Converted data is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.
Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in
Figure 6.5) depending on the programmed state of the AD0LJST bit in the ADC0CN register.
When initiating conversions by writing a ‘1’ to AD0BUSY, the AD0INT bit should be polled to determine
when a conversion has completed (ADC0 interrupts may also be used). The recommended polling proce-
dure is shown below.
When CNVSTR0 is used as a conversion start source, it must be enabled in the crossbar, and the corre-
sponding pin must be set to open-drain, high-impedance mode (see
page 235
ADC Modes of Operation
1. Writing a ‘1’ to the AD0BUSY bit of ADC0CN;
2. A Timer 3 overflow (i.e. timed continuous conversions);
3. A rising edge detected on the external ADC convert start signal, CNVSTR0;
4. A Timer 2 overflow (i.e. timed continuous conversions).
Step 1. Write a ‘0’ to AD0INT;
Step 2. Write a ‘1’ to AD0BUSY;
Step 3. Poll AD0INT for ‘1’;
Step 4. Process ADC0 data.
for more details on Port I/O configuration).
Rev. 1.4
C8051F120/1/2/3/4/5/6/7
Section “18. Port Input/Output” on
C8051F130/1/2/3
75

Related parts for C8051F120DK