TS421-2 STMicroelectronics, TS421-2 Datasheet

no-image

TS421-2

Manufacturer Part Number
TS421-2
Description
360mW MONO AMPLIFIER WITH STANDBY MODE
Manufacturer
STMicroelectronics
Datasheet
DESCRIPTION
The TS419/TS421 is a monaural audio power am-
plifier driving in BTL mode a 16 or 32 earpiece or
receiver speaker. The main advantage of this con-
figuration is to get rid of bulky ouput capacitors.
Capable of descending to low voltages, it delivers
up to 220mW per channel (into 16 loads) of con-
tinuous average power with 0.2% THD+N in the
audio bandwidth from a 5V power supply.
An externally controlled standby mode reduces
the supply current to 10nA (typ.). The TS419/
TS421 can be configured by external gain-setting
resistors or used in a fixed gain version.
APPLICATIONS
ORDER CODE
MiniSO & DFN only available in Tape & Reel with T suffix.
SO is available in Tube (D) and in Tape & Reel (DT)
June 2003
TS419
TS421
TS419
TS419-2
TS419-4
TS419-8
TS421
TS421-2
TS421-4
TS421-8
Number
OPERATING FROM Vcc=2V to 5.5V
STANDBY MODE ACTIVE HIGH (TS419) or
LOW (TS421)
OUTPUT POWER into 16 : 367mW @ 5V
with 10% THD+N max or 295mW @5V and
110mW @3.3V with 1% THD+N max.
LOW CURRENT CONSUMPTION: 2.5mA max
High Signal-to-Noise ratio: 95dB(A) at 5V
PSRR: 56dB typ. at 1kHz, 46dB at 217Hz
SHORT CIRCUIT LIMITATION
ON/OFF click reduction circuitry
Available in SO8, MiniSO8 & DFN 3x3
16/32 ohms earpiece or receiver speaker driver
Mobile and cordless phones (analog / digital)
PDAs & computers
Portable appliances
Part
-40, +85°C
Range:
Temp.
I
D
Package
360mW MONO AMPLIFIER WITH STANDBY MODE
tba tba
tba tba x4/12dB
tba tba x8/18dB
tba tba
tba tba x4/12dB
tba tba x8/18dB
S
Q
external
external
external
external
x2/6dB
x2/6dB
Gain
Marking
TS419I
TS421I
K19A
K19B
K19C
K19D
K21A
K21B
K21C
K21D
PIN CONNECTIONS (top view)
TS421IST, TS421-xIST: MiniSO8
TS419IST, TS419-xIST: MiniSO8
STANDBY
STANDBY
STANDBY
STANDBY
TS421IQT, TS421-xIQT: DFN8
TS419IQT, TS419-xIQT: DFN8
BYPASS
BYPASS
BYPASS
BYPASS
V
V
V
V
GND
GND
GND
GND
OUT 2
OUT 2
OUT 2
OUT 2
TS421IDT: SO8
TS419IDT: SO8
1
1
3
3
4
4
1
1
2
2
2
2
3
3
4
4
8
8
8
8
7
7
6
6
5
5
7
7
6
6
5
5
Vcc
Vcc
V
V
Vcc
Vcc
V
V
V
V
V
V
V
V
V
V
OUT 1
OUT 1
IN-
IN-
OUT 1
OUT 1
IN+
IN+
IN-
IN-
IN+
IN+
TS419
TS421
1/32

Related parts for TS421-2

TS421-2 Summary of contents

Page 1

... TS419-4 tba tba x4/12dB -40, +85°C TS419-8 tba tba x8/18dB TS421 TS421-2 tba tba TS421-4 tba tba x4/12dB TS421-8 tba tba x8/18dB MiniSO & DFN only available in Tape & Reel with T suffix available in Tube (D) and in Tape & Reel (DT) ...

Page 2

... Wake-up time page 28. WU 2/32 Parameter 3) , TS421 x 300mA). Exposure of the short circuit for an extended time period is DD Parameter / TS419 in STANDBY ACTIVE 3) (TS419) or GND (TS421) for the whole temperature range. CC Value Unit 6 V -0. 0. -65 to +150 ° ...

Page 3

... FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS V from +5V to +2V, GND = 0V Symbol R Input Resistance IN Gain value for Gain TS419/TS421-2 G Gain value for Gain TS419/TS421-4 Gain value for Gain TS419/TS421-8 APPLICATION COMPONENTS INFORMATION Components Inverting input resistor which sets the closed loop gain in conjunction with R R ...

Page 4

... L L Gain Margin 400pF Gain Bandwidth Product GBP Slew Rate Guaranteed by design and evaluation. 4/32 Parameter =GND for TS421 STANDBY =Vcc for TS419 STANDBY Rfeed=20k = = 150mW, 20Hz F 20kHz = 220mW, 20Hz ...

Page 5

... 400pF L L Gain Bandwidth Product GBP Slew Rate All electrical values are guaranted with correlation measurements at 2V and 5V Parameter =GND for TS421 STANDBY =Vcc for TS419 STANDBY Rfeed=20k = = 50mW, 20Hz ...

Page 6

... 400pF L L Gain Bandwidth Product GBP Slew Rate All electrical values are guaranted with correlation measurements at 2V and 5V 6/32 Parameter =GND for TS421 STANDBY =Vcc for TS419 STANDBY Rfeed=20k = = 30mW, 20Hz ...

Page 7

... L L Gain Margin 400pF Gain Bandwidth Product GBP Slew Rate Guaranteed by design and evaluation. Parameter =GND for TS421 STANDBY =Vcc for TS419 STANDBY Rfeed=20k = = 13mW, 20Hz F 20kHz = 20mW, 20Hz ...

Page 8

... TS419-TS421 Index of Graphs Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistor Power Dissipation vs Output Power Power Derating vs Ambiant Temperature Output Voltage Swing vs Supply Voltage ...

Page 9

... Vcc = 5V 80 160 140 Tamb = 120 40 100 -20 0 -20 -40 1000 10000 TS419-TS421 Vcc = Gain Tamb = 25 C Phase 0 100 1000 Frequency (kHz) Vcc = +400pF Gain Tamb = 25 C Phase 0 100 1000 Frequency (kHz) ...

Page 10

... TS419-TS421 Fig. 7: Open Loop Gain and Phase vs Frequency 80 Gain 60 40 Phase 20 0 -20 -40 0 100 Frequency (kHz) Fig. 9: Open Loop Gain and Phase vs Frequency 80 Gain 60 40 Phase 20 0 -20 -40 0 100 Frequency (kHz) Fig. 11: Open Loop Gain and Phase vs Frequency 80 Gain ...

Page 11

... Vcc = 3.3V No load 2 3 Fig. 18: Current Consumption vs Standby Voltage TS421 Vcc = 5V No load TS419-TS421 2.0 1.5 Ta=85 C Ta=25 C 1.0 Ta=-40 C 0.5 0 Standby Voltage (V) 2.0 Ta=85 C 1.5 Ta=25 C 1.0 Ta=-40 C 0.5 0 Standby Voltage (V) 2.0 Ta=25 C 1.5 Ta=85 C Ta=-40 C 1.0 0.5 0 Standby Voltage (V) TS419 Vcc = 5V No load 4 5 TS419 Vcc = 2V No load 2 TS421 Vcc = 3.3V No load 3 11/32 ...

Page 12

... THD+N=10% 100 50 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 12/32 Fig. 20: Output Power vs Power Supply Voltage 550 500 450 400 350 300 250 200 150 TS421 100 Vcc = load 0 2 2.0 Fig. 22: Output Power vs Power Supply Voltage 300 250 200 150 100 THD+N=0. 2.0 4.5 5.0 5.5 Fig. 24: Output Power vs Load Resistor ...

Page 13

... Vcc = 3. 1kHz BW < 125kHz Tamb = Fig. 28: Power Dissipation vs Output Power Vcc = 1kHz BW < 125kHz Tamb = Fig. 30: Power Dissipation vs Output Power RL=8 RL=16 120 150 TS419-TS421 100 90 THD+N= THD+N=10 THD+N=0. Load Resistance ( ) ...

Page 14

... TS419-TS421 Fig. 31: Power Dissipation vs Output Power 100 Vcc=2V F=1kHz THD+N< RL= Output Power (mW) Fig. 33: Output Voltage Swing For One Amp. vs Power Supply Voltage 5.0 Tamb=25 C 4.5 Amps. in BTL 4.0 3.5 3.0 2.5 2.0 1.5 RL=32 1.0 0.5 0.0 2.0 2.5 3.0 3.5 Power Supply Voltage (V) 14/32 Fig. 32: Power Derating Curves RL=8 RL= Fig. 34: Low Frequency Cut Off vs Input ...

Page 15

... Vcc=5V 1E-3 100 Fig. 38: THD + N vs Output Power 10 1 0.1 0.01 Vcc=5V 100 Fig. 40: THD + N vs Output Power 10 1 0.1 0.01 Vcc=5V 1E-3 100 TS419-TS421 20Hz < 22kHz Vcc=2V Tamb = 25 C Vcc=2.5V Vcc=3.3V Vcc= 100 Output Power (mW 1kHz < 125kHz ...

Page 16

... TS419-TS421 Fig. 41: THD + N vs Output Power 20kHz < 125kHz Tamb = 25 C Vcc=2V 1 Vcc=2.5V Vcc=3.3V 0 Output Power (mW) Fig. 43: THD + N vs Output Power 20kHz < 125kHz Vcc=2V Tamb = Vcc=2.5V 0.1 Vcc=3. Output Power (mW) Fig ...

Page 17

... Fig. 50: Noise Floor 30 RL>=16 20 Vcc=5V Av Input Grounded Bw < 125kHz 10 Tamb=25 C 10000 20k Fig. 52: PSRR vs Power Supply Voltage -10 -20 -30 -40 -50 -60 -70 -80 10000 100000 TS419-TS421 THD+N < 0.5% RL=32 Tamb = RL=8 RL= 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) Standby=OFF RL>=16 Vcc=2V Av Input Grounded Bw < 125kHz ...

Page 18

... TS419-TS421 Fig. 53: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp - Input = Grounded - Cin = >= 16 -30 Tamb = 25 C -40 Vcc = 2V -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 Frequency (Hz) Fig. 55: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp - Input = Grounded - Cin = 1 F -30 RL >= 16 Tamb = 25 C -40 ...

Page 19

... Vcc=5V 1E-3 100 Fig. 59: THD + N vs Output Power 10 1 0.1 0.01 Vcc=5V 100 Fig. 61: THD + N vs Output Power 10 1 0.1 0.01 Vcc=5V 1E-3 100 TS419-TS421 20Hz Vcc=2V BW < 22kHz Tamb = 25 C Vcc=2.5V Vcc=3.3V Vcc= 100 Output Power (mW 1kHz < 125kHz ...

Page 20

... TS419-TS421 Fig. 62: THD + N vs Output Power 20kHz < 125kHz Tamb = 25 C Vcc=2V 1 Vcc=2.5V Vcc=3. Output Power (mW) Fig. 64: THD + N vs Output Power 20kHz < 125kHz Vcc=2V Tamb = Vcc=2.5V 0.1 Vcc=3. Output Power (mW) Fig ...

Page 21

... Fig. 71: Noise Floor 40 RL>=16 30 Vcc=5V Av Input Grounded Bw < 125kHz Tamb= 10000 20k Fig. 73: PSRR vs Input Capacitor -10 -20 -30 -40 -50 -60 10000 100000 TS419-TS421 RL=32 THD+N < 0.5% 95 Tamb = RL=8 RL= 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) Standby=OFF RL>=16 Vcc=2V Av Input Grounded Bw < ...

Page 22

... TS419-TS421 Fig. 74: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp - Input = Grounded Cb = Cin = 1 F -20 RL >= 16 Tamb = 25 C -30 Vcc = 2V -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 Frequency (Hz) Fig. 76: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp - Input = Grounded - Cin = >= 16 -30 Tamb = 25 C Vcc = 2V ...

Page 23

... Vcc=5V 100 Fig. 80: THD + N vs Output Power 10 1 0.1 Vcc=5V 0.01 1 100 Fig. 82: THD + N vs Output Power 10 1 0.1 0.01 Vcc=5V 100 TS419-TS421 20Hz < 22kHz Tamb = 25 C Vcc=2V Vcc=2.5V Vcc=3.3V Vcc= 100 Output Power (mW 1kHz < 125kHz ...

Page 24

... TS419-TS421 Fig. 83: THD + N vs Output Power 20kHz < 125kHz, Tamb = 25 C Vcc=2V Vcc=2.5V 1 Vcc=3. Output Power (mW) Fig. 85: THD + N vs Output Power 20kHz < 125kHz Vcc=2V Tamb = Vcc=2.5V Vcc=3.3V 0 Output Power (mW) Fig ...

Page 25

... Fig. 92: Noise Floor RL>=16 Vcc= Input Grounded Bw < 125kHz 20 Tamb= 10000 20k Fig. 94: PSRR vs Input Capacitor -10 -20 -30 -40 -50 10000 100000 TS419-TS421 RL=32 THD+N < 0.5% Tamb = 25 C RL=8 RL=16 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) Standby=OFF RL>=16 Vcc=2V Av Input Grounded Bw < 125kHz Tamb=25 C Standby= ...

Page 26

... TS419-TS421 Fig. 95: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp -10 Input = Grounded Cb = Cin = 1 F -20 RL >= 16 Tamb = 25 C -30 -40 -50 Vcc = 5V, 3.3V & 2.5V 100 1000 Frequency (Hz) Fig. 97: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp - Input = Grounded -20 Cin = >= 16 -30 Tamb = 25 C -40 -50 Vcc = 5V, 3.3V & 2.5V ...

Page 27

... For the same power supply voltage, the output power in BTL configuration is four times higher than the output power configuration. Gain In Typical Application Schematic (cf. page 3 of TS419-TS421 datasheet) In the flat region (no C effect), the output voltage IN of the first stage is: Rfeed Vout 1 ...

Page 28

... The maximum theoretical value is reached when Vpeak = Vcc Decoupling of the circuit Two capacitors are needed to bypass properly the TS419/TS421. A power supply bypass capacitor C and a bias voltage bypass capacitor has particular influence on the THD+N in the S high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With 1µ ...

Page 29

... Note : This formula is true only if: is ten times lower than F The following bill of material is an example of a differential amplifier with a gain of 2 and a -3dB lower cuttoff frequency of about 80Hz. Components : TS419-TS421 942000 Designator Part Type 20k / 1% 20k / 1% 100nF 1µ ...

Page 30

... TS419-TS421 PACKAGE MECHANICAL DATA DIM. MIN. A 1.35 A1 0.10 A2 1.10 B 0.33 C 0.19 D 4. 5.80 h 0.25 L 0.40 k ddd 30/32 SO-8 MECHANICAL DATA mm. TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 1.27 6.20 0.50 1.27 ˚ (max.) 8 0.1 inch MIN. TYP. MAX. 0.053 0.069 0.04 0.010 0.043 0.065 0.013 0.020 0.007 0.010 0.189 0.197 0.150 0.157 0.050 0.228 0.244 0.010 0.020 ...

Page 31

... PACKAGE MECHANICAL DATA TS419-TS421 31/32 ...

Page 32

... TS419-TS421 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice ...

Related keywords