TS4890 ST Microelectronics, Inc., TS4890 Datasheet

no-image

TS4890

Manufacturer Part Number
TS4890
Description
1W Mono Audio Amplifier With Standby Active High
Manufacturer
ST Microelectronics, Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TS4890D
Manufacturer:
ST
0
Part Number:
TS4890I
Manufacturer:
ST
0
Part Number:
TS4890ID
Manufacturer:
ST
0
Part Number:
TS4890IDT
Manufacturer:
ST
0
Part Number:
TS4890IDT
Manufacturer:
ST
Quantity:
20 000
Part Number:
TS4890IDT
Manufacturer:
ST
Quantity:
18 759
Part Number:
TS4890IQT
Manufacturer:
ST
0
Part Number:
TS4890IST
Manufacturer:
ST
Quantity:
20 000
Part Number:
TS4890IST
Manufacturer:
ST
Quantity:
12 081
Part Number:
TS4890IST
Manufacturer:
ST
Quantity:
6 947
Part Number:
TS4890IST
Manufacturer:
ST
Quantity:
19 937
Part Number:
TS4890IST
Manufacturer:
STM
Quantity:
10 052
RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH
DESCRIPTION
The TS4890 (MiniSO8 & SO8) is an Audio Power
Amplifier capable of delivering 1W of continuous
RMS. ouput power into 8 load @ 5V.
This Audio Amplifier is exhibiting 0.1% distortion
level (THD) from a 5V supply for a Pout = 250mW
RMS. An external standby mode control reduces
the supply current to less than 10nA. An internal
thermal shutdown protection is also provided.
The TS4890 have been designed for high quality
audio applications such as mobile phones and to
minimize the number of external components.
The unity-gain stable amplifier can be configured
by external gain setting resistors.
APPLICATIONS
ORDER CODE
MiniSO & DFN only available in Tape & Reel: with T suffix.
SO is available in Tube (D) and of Tape & Reel (DT)
June 2003
TS4890
Number
OPERATING FROM V
1W RAI L TO RAIL OUTPUT POWER @
Vcc=5V, THD=1%, f=1kHz, with 8 Load
ULTRA LOW CONSUMPTION IN STANDBY
MODE (10nA)
75dB PSRR @ 217Hz from 5 to 2.2V
POP & CLICK REDUCTION CIRCUITRY
ULTRA LOW DISTORTION (0.1%)
UNITY GAIN STABLE
AVAILABLE IN SO8, MiniSO8 & DFN8
Mobile Phones (Cellular / Cordless)
Laptop / Notebook Computers
PDAs
Portable Audio Devices
Part
Temperature
-40, +85°C
Range
S
CC
Package
= 2.2V to 5.5V
D
Q
Marking
4890I
4890
4890
STANDBY MODE ACTIVE LOW
PIN CONNECTIONS (Top View)
STANDBY
STANDBY
BYPASS
BYPASS
V
V
V
V
TYPICAL APPLICATION SCHEMATIC
IN+
IN+
IN-
IN-
1
1
2
2
3
3
4
4
TS4890ID, TS4890IDT - SO8
TS4890IST - MiniSO8
TS4890IQT - DFN8
8
8
7
7
6
6
5
5
V
V
GND
GND
Vcc
Vcc
V
V
OUT 2
OUT 2
OUT 1
OUT 1
TS4890
1/32

Related parts for TS4890

TS4890 Summary of contents

Page 1

... ULTRA LOW DISTORTION (0.1%) UNITY GAIN STABLE AVAILABLE IN SO8, MiniSO8 & DFN8 DESCRIPTION The TS4890 (MiniSO8 & SO8 Audio Power Amplifier capable of delivering 1W of continuous RMS. ouput power into 8 load @ 5V. This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS ...

Page 2

... TS4890 ABSOLUTE MAXIMUM RATINGS Symbol 1) V Supply voltage Input Voltage i T Operating Free Air Temperature Range oper T Storage Temperature stg T Maximum Junction Temperature j Thermal Resistance Junction to Ambient R thja SO8 MiniSO8 DFN8 4) Pd Power Dissipation ESD Human Body Model ESD Machine Model ...

Page 3

... Standby mode is actived when Vstdby is tied to GND 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz Parameter , RFeed = 22K Vripple = 200mV rms Parameter , RFeed = 22K Vripple = 200mV rms TS4890 Min. Typ. Max. Unit 1000 ...

Page 4

... TS4890 V = 2.6V, GND = 0V 25°C (unless otherwise specified) CC amb Symbol Supply Current input signal, no load 1) Standby Current I STANDBY No input signal, Vstdby = G Output Offset Voltage Voo No input signal Output Power Po THD = 1% Max 1kHz Total Harmonic Distortion + Noise THD + 200mW rms 20Hz < f < 20kHz ...

Page 5

... All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The quiescent current still remains the same. 2. The standby response time is about 1µs. Functional Description TS4890 5/32 ...

Page 6

... TS4890 Fig Open Loop Frequency Response 60 Gain 40 Phase 20 0 -20 -40 0 100 Frequency (kHz) Fig Open Loop Frequency Response 80 Gain 60 40 Phase 20 0 -20 -40 0 100 Frequency (kHz) Fig Open Loop Frequency Response 80 Gain 60 40 Phase 20 0 -20 -40 0 100 Frequency (kHz) 6/32 Fig ...

Page 7

... Gain 0 Vcc = 3. 560pF Tamb = 100 1000 Frequency (kHz) Phase Gain 0 Vcc = 2. 560pF Tamb = 100 1000 Frequency (kHz) TS4890 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 10000 -80 -100 -120 -140 -160 -180 -200 -220 -240 ...

Page 8

... TS4890 Fig Power Supply Rejection Ratio (PSRR) vs Power supply -30 Vripple = 200mVrms Rfeed = 22k -40 Input = floating Tamb = 25 C -50 Vcc = 5V to 2.2V - & 0.1 F -70 -80 10 100 1000 Frequency (Hz) Fig Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor -10 Vcc = 5 to 2.2V Cb=1 F -20 Rfeed = 22k ...

Page 9

... Fig Power Dissipation vs Pout 0.40 Vcc=2.6V 0.35 F=1kHz THD+N<1% 0.30 0.25 0.20 0.15 0.10 0.05 RL=16 0.00 0.0 0.1 Output Power (W) Fig Power Dissipation vs Pout 4.5 5.0 Fig Power Dissipation vs Pout RL=4 RL=8 0.6 0.8 Fig Power Derating Curves RL=4 RL=8 0.2 0.3 1.4 Vcc=5V F=1kHz 1.2 THD+N<1% 1.0 0.8 0.6 0.4 0.2 RL=16 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Output Power (W) 0.40 Vcc=2.6V 0.35 F=1kHz THD+N<1% 0.30 RL=4 0.25 0.20 0.15 RL=8 0.10 0.05 RL=16 0.00 0.0 0.1 0.2 0.3 Output Power (W) 2.0 1.8 1.6 QFN8 1.4 1.2 1.0 SO8 0.8 0.6 0.4 MiniSO8 0.2 0 100 Ambiant Temperature (°C) TS4890 RL=4 RL=8 1.2 1.4 0.4 125 150 9/32 ...

Page 10

... TS4890 Fig THD + N vs Output Power Vcc = Cin = < 125kHz Tamb = 20kHz 20Hz, 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) Fig THD + N vs Output Power Vcc = 3. Cin = < 125kHz Tamb = 20kHz 20Hz, 1kHz 0.1 1E-3 0.01 Output Power (W) Fig THD + N vs Output Power Vcc = 2 ...

Page 11

... BW < 125kHz Tamb = 25 C 20kHz 1 20Hz 0.1 1kHz 1E-3 0.01 0.1 Output Power ( Vcc = Cin = < 125kHz Tamb = 20Hz 20kHz 0.1 1kHz 1E-3 0.01 0.1 Output Power ( Vcc = 3. Cin = < 125kHz Tamb = 20Hz 20kHz 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) TS4890 1 1 11/32 ...

Page 12

... TS4890 Fig THD + N vs Output Power Vcc = 2. Cin = < 125kHz Tamb = 20Hz, 1kHz 20kHz 0.1 1E-3 0.01 Output Power (W) Fig THD + N vs Output Power Vcc = 2. Cin = < 125kHz Tamb = 20Hz 1kHz 0.1 1E-3 0.01 Output Power (W) Fig THD + N vs Output Power ...

Page 13

... BW < 125kHz, Tamb = 20kHz 20Hz 1kHz 0.1 1E-3 0.01 0.1 Output Power ( Vcc = 2.6V 0.1 F, Cin = < 125kHz, Tamb = 20Hz 20kHz 1kHz 0.1 1E-3 0.01 0.1 Output Power ( Vcc = 2.2V 0.1 F, Cin = < 125kHz, Tamb = 20Hz 20kHz 1kHz 0.1 1E-3 0.01 Output Power (W) TS4890 1 0.1 13/32 ...

Page 14

... TS4890 Fig THD + N vs Output Power Vcc = Cin = < 125kHz 1 Tamb = 25 C 20kHz 0.1 20Hz, 1kHz 0.01 1E-3 0.01 Output Power (W) Fig THD + N vs Output Power Vcc = 3. Cin = < 125kHz 1 Tamb = 25 C 20kHz 0.1 20Hz, 1kHz 0.01 1E-3 0.01 Output Power (W) Fig THD + N vs Output Power ...

Page 15

... 1µF BW < 125kHz Tamb = 25°C 0.01 10000 20 Fig THD + N vs Frequency Vcc = 3. 1µF BW < 125kHz 1 Tamb = 25°C 0.1 10000 20 TS4890 20kHz 20Hz 1kHz 0.01 0.1 Output Power (W) Pout = 1.2W Pout = 600mW 100 1000 10000 Frequency (Hz) Pout = 540mW Pout = 270mW 100 1000 ...

Page 16

... TS4890 Fig THD + N vs Frequency Vcc = 2. 1µ < 125kHz Tamb = 25°C 0.1 20 100 1000 Frequency (Hz) Fig THD + N vs Frequency Vcc = 2. < 125kHz Tamb = 25 C Pout = 175mW 0.1 20 100 1000 Frequency (Hz) Fig THD + N vs Frequency 0.1µ 1µ ...

Page 17

... Cb = 0.1µ 1µF 0.1 20 100 1000 Frequency (Hz Vcc = 3. Pout = 200mW BW < 125kHz Tamb = 25° 0.1µ 1µF 0.1 20 100 1000 Frequency (Hz Vcc = 3. Pout = 200mW BW < 125kHz 1 Tamb = 25° 0.1µ 1µF 0.1 20 100 1000 Frequency (Hz) TS4890 10000 10000 10000 17/32 ...

Page 18

... TS4890 Fig THD + N vs Frequency 0.1µ 1µF 0.1 20 100 1000 Frequency (Hz) Fig THD + N vs Frequency 0.1µ 1µF 0.1 20 100 1000 Frequency (Hz) Fig THD + N vs Frequency 0 0.1 20 100 1000 Frequency (Hz) 18/32 Fig THD + N vs Frequency Vcc = 2. Pout = 220mW BW < ...

Page 19

... Frequency (Hz Vcc = 10 1µF BW < 125kHz Tamb = 25°C Pout = 620mW 0.1 Pout = 310mW 0.01 20 100 1000 Frequency (Hz Vcc = 3. 1µF BW < 125kHz Tamb = 25°C Pout = 270mW 0.1 Pout = 135mW 20 100 1000 Frequency (Hz) TS4890 10000 10000 10000 19/32 ...

Page 20

... TS4890 Fig THD + N vs Frequency Vcc = 2. 10 < 125kHz Tamb = 25 C Pout = 160mW 0.1 0.01 20 100 1000 Frequency (Hz) Fig THD + N vs Frequency 1 Pout = 50 & 100mW 0.1 0.01 20 100 1000 Frequency (Hz) Fig Signal to Noise Ratio vs Power Supply with Unweighted Filter (20Hz to 20kHz) 100 90 RL=16 RL=8 80 ...

Page 21

... Tamb = 25 C 1000 10000 Fig Current Consumption vs Standby Voltage @ Vcc = 3.3V Vcc = 5V Tamb = 25 C 3.5 4.0 4.5 5.0 100 90 RL=8 80 RL=16 RL Cin = 1 F THD+N < 0.4% Tamb = 2.2 2.5 3.0 3.5 4.0 Vcc (V) 7 Vstandby = Vcc Tamb = Vcc ( Vcc = 3.3V Tamb = 0.0 0.5 1.0 1.5 2.0 2.5 Vstandby (V) TS4890 4.5 5 3.0 21/32 ...

Page 22

... TS4890 Fig Current Consumption vs Standby Voltage @ Vcc = 2. 0.0 0.5 1.0 1.5 Vstandby (V) Fig Clipping Voltage vs Power Supply Voltage and Load Resistor 1.0 Tamb = 25 C 0.9 0.8 0.7 0.6 0 0.4 0.3 0.2 0.1 0.0 2.2 2.5 3.0 3.5 Power supply Voltage (V) Fig. 101 : Vout1+Vout2 Unweighted Noise Floor 120 Vcc = 2.2V to 5V, Tamb = Cin = 1 F 100 Input Grounded ...

Page 23

... APPLICATION INFORMATION Fig. 103 : Demoboard Schematic Fig. 104 : SO8 & MiniSO8 Demoboard Components Side TS4890 23/32 ...

Page 24

... Fig. 106 : SO8 & MiniSO8 Demoboard Bottom Solder Layer BTL Configuration Principle The TS4890 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load are connected to two single ended output amplifiers. Thus, we have : ...

Page 25

... The maximum theoretical value is reached when Vpeak = Vcc, so Decoupling of the circuit Two capacitors are needed to bypass properly the TS4890. A power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb has especially an influence on the THD+N in high frequency (above 7kHz) and indirectly on the power supply disturbances ...

Page 26

... So, we could use for Cin a 1µF capacitor value that gives 16Hz. In Higher frequency we want 20kHz (-3dB cut off frequency). The Gain Bandwidth Product of the TS4890 is 2MHz typical and doesn't change when the amplifier delivers power into the load. 26/32 The first amplifier has a gain of and the theoretical value of the -3dB cut of higher frequency is 2MHz/3 = 660kHz ...

Page 27

... Short Circuit 22k / 0.125W Short Cicuit (Vcc-Vf_led)/If_led 10k / 0.125W 470pF 150nF 100µF 100nF Short Circuit Short Circuit 1µF 2mm insulated Plug 10.16mm pitch 3 pts connector 2.54mm pitch PCB Phono Jack Led 3mm TS4890ID or TS4890IS ------- - 27/32 ...

Page 28

... R6 110k / 0.125W R7* (Vcc-Vf_led)/If_led R8 10k / 0.125W C4 470nF C5 470nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF D1* Led 3mm 2mm insulated Plug S1, S2, S6, S7 10.16mm pitch 3 pts connector 2.54mm S8 pitch P1, P2 PCB Phono Jack U1 TS4890ID or TS4890IS 28/32 Part Type ...

Page 29

... The PSRR value for each frequency is : PSRR Remark : The measure of the Rms voltage is not a Rms selective measure but a full range ( 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. 10000 100000 Rms V ( ripple ( Log 10 Rms ( Vs TS4890 ) Vs ) 29/32 ...

Page 30

... TS4890 PACKAGE MECHANICAL DATA DIM. MIN. A 1.35 A1 0.10 A2 1.10 B 0.33 C 0.19 D 4. 5.80 h 0.25 L 0.40 k ddd 30/32 SO-8 MECHANICAL DATA mm. TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 1.27 6.20 0.50 1.27 ˚ (max.) 8 0.1 inch MIN. TYP. MAX. 0.053 0.069 0.04 0.010 0.043 0.065 0.013 0.020 0.007 0.010 0.189 0.197 0.150 0.157 0.050 0.228 0.244 0.010 0.020 ...

Page 31

... PACKAGE MECHANICAL DATA TS4890 31/32 ...

Page 32

... TS4890 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice ...

Related keywords