DSPIC33FJ16GS502-I/SO Microchip Technology, DSPIC33FJ16GS502-I/SO Datasheet - Page 21

IC DSPIC MCU/DSP 16K 28-SOIC

DSPIC33FJ16GS502-I/SO

Manufacturer Part Number
DSPIC33FJ16GS502-I/SO
Description
IC DSPIC MCU/DSP 16K 28-SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ16GS502-I/SO

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Core Frequency
40MHz
Core Supply Voltage
3.3V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
21
Flash Memory Size
16KB
Supply Voltage Range
3V To 3.6V
Package
28SOIC W
Device Core
dsPIC
Family Name
dsPIC33
Maximum Speed
40 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ16GS502-I/SO
Manufacturer:
MICROCHIP
Quantity:
11 200
Part Number:
DSPIC33FJ16GS502-I/SO
Manufacturer:
TAIYO YUDEN
0
Part Number:
DSPIC33FJ16GS502-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
2.0
2.1
Getting started with the dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X04 family of 16-bit Digital Signal
Controllers (DSC) requires attention to a minimal set of
device pin connections before proceeding with
development. The following is a list of pin names, which
must always be connected:
• All V
• All AV
• V
• MCLR pin
• PGECx/PGEDx pins used for In-Circuit Serial
• OSC1 and OSC2 pins when external oscillator
© 2009 Microchip Technology Inc.
Note:
(see Section 2.2 “Decoupling Capacitors”)
is not used)
(see Section 2.2 “Decoupling Capacitors”)
(see Section 2.3 “Capacitor on Internal Voltage
Regulator (V
(see Section 2.4 “Master Clear (MCLR) Pin”)
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
source is used
(see Section 2.6 “External Oscillator Pins”)
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04
CAP
DD
/V
DD
GUIDELINES FOR GETTING
STARTED WITH 16-BIT
DIGITAL SIGNAL
CONTROLLERS
Basic Connection Requirements
DDCORE
and V
and AV
This data sheet summarizes the features
of
dsPIC33FJ16GSX02/X04
devices. It is not intended to be a
comprehensive reference source.
complement the information in this data
sheet, refer to the dsPIC33F Family
Reference Manual, which is available from
the
(www.microchip.com).
CAP
SS
the
SS
pins
/V
DDCORE
pins (regardless if ADC module
dsPIC33FJ06GS101/X02
Microchip
)”)
family
website
and
Preliminary
To
of
2.2
The use of decoupling capacitors on every pair of
power supply pins, such as V
AV
Consider the following criteria when using decoupling
capacitors:
• Value and type of capacitor: Recommendation
• Placement on the printed circuit board: The
• Handling high frequency noise: If the board is
• Maximizing performance: On the board layout
of 0.1 μF (100 nF), 10-20V. This capacitor should
be a low-ESR and have resonance frequency in
the range of 20 MHz and higher. It is
recommended that ceramic capacitors be used.
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is within
one-quarter inch (6 mm) in length.
experiencing high frequency noise, upward of
tens of MHz, add a second ceramic-type capacitor
in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 μF to 0.001 μF. Place this
second capacitor next to the primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible.
For example, 0.1 μF in parallel with 0.001 μF.
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum thereby reducing PCB track inductance.
SS
is required.
Decoupling Capacitors
DD
, V
DS70318D-page 19
SS
, AV
DD
and

Related parts for DSPIC33FJ16GS502-I/SO