DSPIC33FJ16GS504-I/PT Microchip Technology, DSPIC33FJ16GS504-I/PT Datasheet - Page 78

IC DSPIC MCU/DSP 16K 44-TQFP

DSPIC33FJ16GS504-I/PT

Manufacturer Part Number
DSPIC33FJ16GS504-I/PT
Description
IC DSPIC MCU/DSP 16K 44-TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ16GS504-I/PT

Program Memory Type
FLASH
Program Memory Size
16KB (16K x 8)
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 12x10b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC33F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
35
Data Ram Size
2 KB
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ16GS504-I/PT
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
DSPIC33FJ16GS504-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC33FJ16GS504-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
present in the program space. To use this data success-
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04
4.6
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/
X04 architecture uses a 24-bit-wide program space and a
16-bit-wide data space. The architecture is also a modi-
fied Harvard scheme, meaning that data can also be
fully, it must be accessed in a way that preserves the
alignment of information in both spaces.
Aside from normal execution, the dsPIC33FJ06GS101/
X02
provides two methods by which program space can be
accessed during operation:
• Using table instructions to access individual bytes
• Remapping a portion of the program space into
Table instructions allow an application to read or write
to small areas of the program memory. This capability
makes the method ideal for accessing data tables that
need to be updated periodically. It also allows access
to all bytes of the program word. The remapping
method allows an application to access a large block of
data on a read-only basis, which is ideal for look ups
from a large table of static data. The application can
only access the least significant word of the program
word.
TABLE 4-50:
DS70318D-page 76
Instruction Access
(Code Execution)
TBLRD/TBLWT
(Byte/Word Read/Write)
Program Space Visibility
(Block Remap/Read)
Note 1:
or words anywhere in the program space
the data space (Program Space Visibility)
and
Access Type
Interfacing Program and Data
Memory Spaces
Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of
the address is PSVPAG<0>.
dsPIC33FJ16GSX02/X04
PROGRAM SPACE ADDRESS CONSTRUCTION
User
User
Configuration
User
Access
Space
architecture
Preliminary
<23>
0
0
0
TBLPAG<7:0>
TBLPAG<7:0>
0xxx xxxx
1xxx xxxx
4.6.1
Since the address ranges for the data and program
spaces are 16 and 24 bits, respectively, a method is
needed to create a 23-bit or 24-bit program address
from 16-bit data registers. The solution depends on the
interface method to be used.
For table operations, the 8-bit Table Page register
(TBLPAG) is used to define a 32K word region within
the program space. This is concatenated with a 16-bit
EA to arrive at a full 24-bit program space address. In
this format, the Most Significant bit of TBLPAG is used
to determine if the operation occurs in the user memory
(TBLPAG<7> = 0) or the configuration memory
(TBLPAG<7> = 1).
For remapping operations, the 8-bit Program Space
Visibility Register (PSVPAG) is used to define a
16K word page in the program space. When the Most
Significant bit of the EA is ‘1’, PSVPAG is concatenated
with the lower 15 bits of the EA to form a 23-bit program
space address. Unlike table operations, this limits
remapping operations strictly to the user memory area.
Table 4-50 and Figure 4-9 show how the program EA is
created for table operations and remapping accesses
from the data EA. Here, P<23:0> refers to a program
space word, and D<15:0> refers to a data space word.
0xx xxxx xxxx xxxx xxxx xxx0
<22:16>
xxxx xxxx
PSVPAG<7:0>
Program Space Address
ADDRESSING PROGRAM SPACE
PC<22:1>
xxxx xxxx xxxx xxxx
xxxx xxxx xxxx xxxx
<15>
© 2009 Microchip Technology Inc.
xxx xxxx xxxx xxxx
Data EA<15:0>
Data EA<15:0>
<14:1>
Data EA<14:0>
(1)
<0>
0

Related parts for DSPIC33FJ16GS504-I/PT