AT32UC3A0256-ALUT Atmel, AT32UC3A0256-ALUT Datasheet - Page 517

IC MCU AVR32 256KB FLASH 144LQFP

AT32UC3A0256-ALUT

Manufacturer Part Number
AT32UC3A0256-ALUT
Description
IC MCU AVR32 256KB FLASH 144LQFP
Manufacturer
Atmel
Series
AVR®32 UC3r
Datasheets

Specifications of AT32UC3A0256-ALUT

Core Processor
AVR
Core Size
32-Bit
Speed
66MHz
Connectivity
EBI/EMI, Ethernet, I²C, SPI, SSC, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
109
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LQFP
Processor Series
AT32UC3x
Core
AVR32
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
2-Wire, RS-485, SPI, USART
Maximum Clock Frequency
66 MHz
Number Of Programmable I/os
69
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR32, EWAVR32-BL, KSK-EVK1100-PL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATEXTWIFI, ATEVK1100, ATEVK1105
Minimum Operating Temperature
- 40 C
Controller Family/series
AT32UC3A
No. Of I/o's
109
Ram Memory Size
64KB
Cpu Speed
66MHz
No. Of Timers
1
Rohs Compliant
Yes
Package
144LQFP
Device Core
AVR32
Family Name
AT32
Maximum Speed
66 MHz
Operating Supply Voltage
1.8|3.3 V
For Use With
ATEVK1105 - KIT EVAL FOR AT32UC3A0ATAVRONEKIT - KIT AVR/AVR32 DEBUGGER/PROGRMMR770-1008 - ISP 4PORT ATMEL AVR32 MCU SPIATEVK1100 - KIT DEV/EVAL FOR AVR32 AT32UC3A
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3A0256-ALUT
Manufacturer:
ATMEL
Quantity:
167
Part Number:
AT32UC3A0256-ALUT
Manufacturer:
Atmel
Quantity:
10 000
Figure 30-18. Example of an IN Endpoint with 2 Data Banks
30.7.2.12.2 Detailed Description
32058J–AVR32–04/11
TXINI
FIFOCON
SW
write data to CPU
The data is written by the firmware, following the next flow:
If the endpoint uses several banks, the current one can be written by the firmware while the pre-
vious one is being read by the host. Then, when the firmware clears FIFOCON, the following
bank may already be free and TXINI is set immediately.
An “Abort” stage can be produced when a zero-length OUT packet is received during an IN
stage of a control or isochronous IN transaction. The KILLBK bit is used to kill the last written
bank. The best way to manage this abort is to apply the algorithm represented on
•when the bank is empty, TXINI and FIFOCON are set, what triggers an EPXINT interrupt if
•the firmware acknowledges the interrupt by clearing TXINI;
•the firmware writes the data into the current bank by using the USB Pipe/Endpoint X FIFO
•the firmware allows the controller to send the bank and switches to the next bank (if any) by
BANK 0
TXINE = 1;
Data register (USB_FIFOX_DATA), until all the data frame is written or the bank is full (in
which case RWALL is cleared by hardware and BYCT reaches the endpoint size);
clearing FIFOCON.
SW
IN
SW
write data to CPU
BANK 1
(bank 0)
DATA
SW
HW
ACK
SW
write data to CPU
IN
BANK0
(bank 1)
DATA
AT32UC3A
ACK
Figure
30-19.
517

Related parts for AT32UC3A0256-ALUT