MC908AP64CFAE Freescale Semiconductor, MC908AP64CFAE Datasheet - Page 280

IC MCU 64K 8MHZ SPI 48-LQFP

MC908AP64CFAE

Manufacturer Part Number
MC908AP64CFAE
Description
IC MCU 64K 8MHZ SPI 48-LQFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheets

Specifications of MC908AP64CFAE

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, IRSCI, SCI, SPI
Peripherals
LED, LVD, POR, PWM
Number Of I /o
32
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-LQFP
Cpu Family
HC08
Device Core Size
8b
Frequency (max)
8MHz
Interface Type
SCI/SPI
Total Internal Ram Size
2KB
# I/os (max)
32
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
48
Package Type
LQFP
Controller Family/series
HC08
No. Of I/o's
32
Ram Memory Size
2KB
Cpu Speed
8MHz
No. Of Timers
2
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
Processor Series
HC08AP
Core
HC08
Data Bus Width
8 bit
Data Ram Size
2 KB
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
32
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Development Tools By Supplier
FSICEBASE, DEMO908AP64E, M68CBL05CE
Minimum Operating Temperature
- 40 C
Package
48LQFP
Family Name
HC08
Maximum Speed
8 MHz
Operating Supply Voltage
3.3|5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908AP64CFAE
Manufacturer:
Freescale
Quantity:
3 359
Part Number:
MC908AP64CFAE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AP64CFAER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Keyboard Interrupt Module (KBI)
18.4 Functional Description
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or
disables each port D pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port D also
enables its internal pull-up device. A logic 0 applied to an enabled keyboard interrupt pin latches a
keyboard interrupt request.
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK
bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low level-sensitive, and both
of the following actions must occur to clear a keyboard interrupt request:
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may
occur in any order.
278
KBI0
KBI7
TO PULLUP ENABLE
TO PULLUP ENABLE
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an
interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on
one pin because another pin is still low, software can disable the latter pin while it is low.
If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as
long as any keyboard pin is low.
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear
the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1
to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in
applications that poll the keyboard interrupt pins and require software to clear the keyboard
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on
the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program
counter with the vector address at locations $FFE0 and $FFE1.
Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard
interrupt pin is at logic 0, the keyboard interrupt remains set.
KBIE0
KBIE7
.
.
.
Figure 18-2. Keyboard Interrupt Block Diagram
MC68HC908AP Family Data Sheet, Rev. 4
MODEK
V
DD
D
CK
CLR
Q
INTERRUPT FF
KEYBOARD
RESET
ACKK
VECTOR FETCH
INTERNAL BUS
DECODER
IMASKK
SYNCHRONIZER
Freescale Semiconductor
KEYF
Keyboard
Interrupt
Request

Related parts for MC908AP64CFAE