MC9S12E128CPVE Freescale Semiconductor, MC9S12E128CPVE Datasheet - Page 65

IC MCU 128K FLASH 25MHZ 112-LQFP

MC9S12E128CPVE

Manufacturer Part Number
MC9S12E128CPVE
Description
IC MCU 128K FLASH 25MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheets

Specifications of MC9S12E128CPVE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
EBI/EMI, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
91
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 2.75 V
Data Converters
A/D 16x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
S12E
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
92
Number Of Timers
12
Operating Supply Voltage
3.135 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 10-bit
On-chip Dac
2-ch x 8-bit
Controller Family/series
HCS12/S12X
No. Of I/o's
90
Ram Memory Size
8KB
Cpu Speed
25MHz
No. Of Timers
4
Embedded Interface Type
I2C, SCI, SPI
Rohs Compliant
Yes
For Use With
M68EVB912E128 - BOARD EVAL FOR MC9S12E128/64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Part Number:
MC9S12E128CPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
1.4.8
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free cycle”. This signal
will assert when the CPU is not using the bus. The XCLKS is an input signal which controls whether a
crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce
oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If
the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If
the input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is
an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts
oscillator circuit on EXTAL and XTAL.
1.4.9
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low. PE6 is not available in the 80 pin package version.
Freescale Semiconductor
PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE6 / MODB / IPIPE1 — Port E I/O Pin 6
1. Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is
applied to the crystal. Please contact the crystal manufacturer for crystal DC
MCU
MCU
Figure 1-8. Colpitts Oscillator Connections (PE7 = 1)
1. Rs can be zero (shorted) when use with higher frequency crystals.
Figure 1-9. Pierce Oscillator Connections (PE7 = 0)
EXTAL
EXTAL
XTAL
XTAL
Refer to manufacturer’s data.
MC9S12E128 Data Sheet, Rev. 1.07
RS
CDC
1
1
RB
C1
C2
Chapter 1 MC9S12E128 Device Overview (MC9S12E128DGV1)
ceramic resonator
Crystal or
VSSPLL
C1
C2
ceramic resonator
Crystal or
VSSPLL
65

Related parts for MC9S12E128CPVE