ATMEGA32U4-AUR Atmel, ATMEGA32U4-AUR Datasheet - Page 233

MCU AVR 16K FLASH 16MHZ 44TQFP

ATMEGA32U4-AUR

Manufacturer Part Number
ATMEGA32U4-AUR
Description
MCU AVR 16K FLASH 16MHZ 44TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA32U4-AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
26
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2.5K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
20.6.4
20.6.5
7766F–AVR–11/10
TWI Data Register – TWDR
TWI (Slave) Address Register – TWAR
caler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.
• Bit 2 – Res: Reserved Bit
This bit is reserved and will always read as zero.
• Bits 1..0 – TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.
Table 20-2.
To calculate bit rates, see
used in the equation.
In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-
ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains
stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously
shifted in. TWDR always contains the last byte present on the bus, except after a wake up from
a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case
of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.
• Bits 7..0 – TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.
The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.
Bit
Read/Write
Initial Value
Bit
Read/Write
Initial Value
TWPS1
0
0
1
1
TWD7
TWA6
TWI Bit Rate Prescaler
R/W
R/W
7
1
7
1
TWD6
TWA5
R/W
R/W
TWPS0
0
1
0
1
6
1
6
1
“Bit Rate Generator Unit” on page
TWD5
TWA4
R/W
R/W
5
1
5
1
TWD4
TWA3
R/W
R/W
4
1
4
1
Prescaler Value
1
4
16
64
TWD3
TWA2
R/W
R/W
3
1
3
1
TWD2
TWA1
R/W
R/W
2
1
2
1
TWD1
TWA0
229. The value of TWPS1..0 is
R/W
R/W
ATmega16/32U4
1
1
1
1
TWGCE
TWD0
R/W
R/W
0
1
0
0
TWDR
TWAR
233

Related parts for ATMEGA32U4-AUR