ATMEGA32U4-MUR Atmel, ATMEGA32U4-MUR Datasheet - Page 184

no-image

ATMEGA32U4-MUR

Manufacturer Part Number
ATMEGA32U4-MUR
Description
MCU AVR 16K FLASH 16MHZ 44VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA32U4-MUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
26
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2.5K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-VQFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32U4-MUR
Manufacturer:
UCC
Quantity:
1 001
17.1.5
17.2
7766F–AVR–11/10
Data Modes
SPI Data Register – SPDR
• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).
• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.
• Bit 5..1 – Res: Reserved Bits
These bits are reserved bits in the ATmega16U4/ATmega32U4 and will always read as zero.
• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f
or lower.
The SPI interface on the ATmega16U4/ATmega32U4 is also used for program memory and
EEPROM downloading or uploading. See
The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.
There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in
17-3
nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 17-2
Bit
Read/Write
Initial Value
and
Figure
and
7
MSB
R/W
X
Table
17-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-
6
R/W
X
17-3, as done below:
Table
5
R/W
X
17-4). This means that the minimum SCK period will be two CPU
4
R/W
X
page 360
3
X
R/W
for serial programming and verification.
2
R/W
X
1
R/W
X
ATmega16/32U4
0
LSB
R/W
X
SPDR
Undefined
Figure
osc
184
/4

Related parts for ATMEGA32U4-MUR