AT89C5131A-PUTUM Atmel, AT89C5131A-PUTUM Datasheet - Page 131

IC 8051 MCU FLASH 32K USB 32QFN

AT89C5131A-PUTUM

Manufacturer Part Number
AT89C5131A-PUTUM
Description
IC 8051 MCU FLASH 32K USB 32QFN
Manufacturer
Atmel
Series
AT89C513xr
Datasheet

Specifications of AT89C5131A-PUTUM

Core Processor
C52X2
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
LED, POR, PWM, WDT
Number Of I /o
18
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
1.25K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Core
8051
Processor Series
AT89x
Data Bus Width
8 bit
Maximum Clock Frequency
48 MHz
Data Ram Size
1.25 KB
Number Of Programmable I/os
34
Number Of Timers
16 bit
Operating Supply Voltage
2.7 V to 5.5 V
Mounting Style
SMD/SMT
Height
0.95 mm
Interface Type
2-Wire, EUART, SPI, USB
Length
7 mm
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
7 mm
For Use With
AT89OCD-01 - USB EMULATOR FOR AT8XC51 MCUAT89STK-10 - KIT EVAL APPL MASS STORAGEAT89STK-05 - KIT STARTER FOR AT89C5131
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT89C5131A-PUTUM
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
21.6
21.6.1
21.6.2
4337K–USB–04/08
Isochronous Transactions
Isochronous OUT Transactions in Standard Mode
Isochronous OUT Transactions in Ping-pong Mode
An endpoint will be first enabled and configured before being able to receive Isochronous
packets.
When a OUT packet is received on an endpoint, the RXOUTB0 bit is set by the USB controller.
This triggers an interrupt if enabled. The firmware has to select the corresponding endpoint,
store the number of data bytes by reading the UBYCTLX and UBYCTHX registers. If the
received packet is a ZLP (Zero Length Packet), the UBYCTLX and UBYCTHX register values
are equal to 0 and no data has to be read.
The STLCRC bit in the UEPSTAX register is set by the USB controller if the packet stored in
FIFO has a corrupted CRC. This bit is updated after each new packet receipt.
When all the endpoint FIFO bytes have been read, the firmware will clear the RXOUTB0 bit to
allow the USB controller to store the next OUT packet data into the endpoint FIFO. Until the
RXOUTB0 bit has been cleared by the firmware, the data sent by the Host at each OUT transac-
tion will be lost.
If the RXOUTB0 bit is cleared while the Host is sending data, the USB controller will store only
the remaining bytes into the FIFO.
If the Host sends more bytes than supported by the endpoint FIFO, the overflow data won’t be
stored, but the USB controller will consider that the packet is valid if the CRC is correct.
An endpoint will be first enabled and configured before being able to receive Isochronous
packets.
When a OUT packet is received on the endpoint bank 0, the RXOUTB0 bit is set by the USB
controller. This triggers an interrupt if enabled. The firmware has to select the corresponding
endpoint, store the number of data bytes by reading the UBYCTLX and UBYCTHX registers. If
the received packet is a ZLP (Zero Length Packet), the UBYCTLX and UBYCTHX register val-
ues are equal to 0 and no data has to be read.
The STLCRC bit in the UEPSTAX register is set by the USB controller if the packet stored in
FIFO has a corrupted CRC. This bit is updated after each new packet receipt.
When all the endpoint FIFO bytes have been read, the firmware will clear the RXOUB0 bit to
allow the USB controller to store the next OUT packet data into the endpoint FIFO bank 0. This
action switches the endpoint bank 0 and 1. Until the RXOUTB0 bit has been cleared by the firm-
ware, the data sent by the Host on the bank 0 endpoint FIFO will be lost.
If the RXOUTB0 bit is cleared while the Host is sending data on the endpoint bank 0, the USB
controller will store only the remaining bytes into the FIFO.
When a new OUT packet is received on the endpoint bank 1, the RXOUTB1 bit is set by the
USB controller. This triggers an interrupt if enabled. The firmware empties the bank 1 endpoint
FIFO before clearing the RXOUTB1 bit. Until the RXOUTB1 bit has been cleared by the firm-
ware, the data sent by the Host on the bank 1 endpoint FIFO will be lost.
The RXOUTB0 and RXOUTB1 bits are alternatively set by the USB controller at each new
packet receipt.
AT89C5130A/31A-M
131

Related parts for AT89C5131A-PUTUM