ATMEGA32U4-AU Atmel, ATMEGA32U4-AU Datasheet - Page 337

MCU AVR 32K FLASH 16MHZ 44-TQFP

ATMEGA32U4-AU

Manufacturer Part Number
ATMEGA32U4-AU
Description
MCU AVR 32K FLASH 16MHZ 44-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA32U4-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
26
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2.5K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2.5 KB
Interface Type
SPI/TWI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
26
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
12-ch x 10-bit
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
2.5KB
# I/os (max)
26
Number Of Timers - General Purpose
5
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
TQFP
Controller Family/series
AVR MEGA
No. Of I/o's
26
Eeprom Memory Size
1KB
Ram Memory Size
2.5KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
ATMEGA32U4-16AU
ATMEGA32U4-16AU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32U4-AU
Manufacturer:
FREESCALE
Quantity:
125
Part Number:
ATMEGA32U4-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA32U4-AU
Manufacturer:
MICROCHIP
Quantity:
200
Part Number:
ATMEGA32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
27.6
7766F–AVR–11/10
Addressing the Flash During Self-Programming
• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.
• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.
• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.
Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
Note:
The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers
ZL and ZH in the register file, and RAMPZ in the I/O space. The number of bits actually used is
implementation dependent. Note that the RAMPZ register is only implemented when the pro-
gram space is larger than 64K bytes.
Since the Flash is organized in pages (see
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.
The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.
Bit
RAMPZ
ZH (R31)
ZL (R30)
Only one SPM instruction should be active at any time.
23
15
RAMPZ7
Z15
Z7
7
Figure
22
14
RAMPZ6
Z14
Z6
6
27-4. Note that the Page Erase and Page Write operations are
21
13
RAMPZ5
Z13
Z5
5
20
12
RAMPZ4
Z12
Z4
4
Table 28-11 on page
19
11
RAMPZ3
Z11
Z3
3
18
10
RAMPZ2
Z10
Z2
2
ATmega16/32U4
351), the Program Counter can
17
9
RAMPZ1
Z1
1
Z9
16
8
RAMPZ0
Z8
Z0
0
337

Related parts for ATMEGA32U4-AU