PXAG37KFA,512 NXP Semiconductors, PXAG37KFA,512 Datasheet - Page 19

IC XA MCU 16BIT 32K OTP 44-PLCC

PXAG37KFA,512

Manufacturer Part Number
PXAG37KFA,512
Description
IC XA MCU 16BIT 32K OTP 44-PLCC
Manufacturer
NXP Semiconductors
Series
XAr
Datasheets

Specifications of PXAG37KFA,512

Core Processor
XA
Core Size
16-Bit
Speed
30MHz
Connectivity
UART/USART
Peripherals
PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (32K x 8)
Program Memory Type
OTP
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-PLCC
Processor Series
PXAG3x
Core
80C51
Data Bus Width
16 bit
Data Ram Size
512 B
Interface Type
UART
Maximum Clock Frequency
30 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Cpu Family
XA
Device Core
80C51
Device Core Size
16b
Frequency (max)
30MHz
Total Internal Ram Size
512Byte
# I/os (max)
32
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
PLCC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Data Converters
-
Lead Free Status / Rohs Status
 Details
Other names
568-1096-5
935263502512
PXAG37KFA

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PXAG37KFA,512
Manufacturer:
Freescale
Quantity:
108
Part Number:
PXAG37KFA,512
Manufacturer:
NXP Semiconductors
Quantity:
10 000
9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no
Philips Semiconductors
UART INTERRUPT SCHEME
There are separate interrupt vectors for each UART’s transmit and
receive functions.
Table 3. Vector Locations for UARTs in XA
NOTE:
The transmit and receive vectors could contain the same ISR
address to work like a 8051 interrupt scheme
Error Handling, Status Flags and Break Detect
The UARTs in XA has the following error flags; see Figure 11.
Multiprocessor Communications
Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received. The 9th
one goes into RB8. Then comes a stop bit. The port can be
programmed such that when the stop bit is received, the serial port
interrupt will be activated only if RB8 = 1. This feature is enabled by
setting bit SM2 in SCON. A way to use this feature in multiprocessor
systems is as follows:
When the master processor wants to transmit a block of data to one
of several slaves, it first sends out an address byte which identifies
the target slave. An address byte differs from a data byte in that the
slave will be interrupted by a data byte. An address byte, however,
will interrupt all slaves, so that each slave can examine the received
byte and see if it is being addressed. The addressed slave will clear
its SM2 bit and prepare to receive the data bytes that will be coming.
The slaves that weren’t being addressed leave their SM2s set and
go on about their business, ignoring the coming data bytes.
SM2 has no effect in Mode 0, and in Mode 1 can be used to check
the validity of the stop bit although this is better done with the
Framing Error (FE) flag. In a Mode 1 reception, if SM2 = 1, the
receive interrupt will not be activated unless a valid stop bit is
received.
Automatic Address Recognition
Automatic Address Recognition is a feature which allows the UART
to recognize certain addresses in the serial bit stream by using
hardware to make the comparisons. This feature saves a great deal
of software overhead by eliminating the need for the software to
examine every serial address which passes by the serial port. This
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be
automatically set when the received byte contains either the “Given”
address or the “Broadcast” address. The 9 bit mode requires that
the 9th information bit is a 1 to indicate that the received information
is an address and not data. Automatic address recognition is shown
in Figure 14.
Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
2002 Mar 25
A0H – A3H
A4H – A7H
A8H – ABH
ACH – AFH
XA 16-bit microcontroller family
32K OTP, 512 B RAM, watchdog, 2 UARTs
Vector Address
UART 0 Receiver
UART 0 Transmitter
UART 1 Receiver
UART 1 Transmitter
Interrupt Source
7
8
9
10
Arbitration
17
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave’s address, SADDR, and the
address mask, SADEN. SADEN is used to define which bits in the
SADDR are to be used and which bits are “don’t care”. The SADEN
mask can be logically ANDed with the SADDR to create the “Given”
address which the master will use for addressing each of the slaves.
Use of the Given address allows multiple slaves to be recognized
while excluding others. The following examples will help to show the
versatility of this scheme:
Slave 0
Slave 1
In the above example SADDR is the same and the SADEN data is
used to differentiate between the two slaves. Slave 0 requires a 0 in
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.
In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:
Slave 0
Slave 1
Slave 2
In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0
and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.
The Broadcast Address for each slave is created by taking the
logical OR of SADDR and SADEN. Zeros in this result are teated as
don’t-cares. In most cases, interpreting the don’t-cares as ones, the
broadcast address will be FF hexadecimal.
Upon reset SADDR and SADEN are loaded with 0s. This produces
a given address of all “don’t cares” as well as a Broadcast address
of all “don’t cares”. This effectively disables the Automatic
Addressing mode and allows the microcontroller to use standard
UART drivers which do not make use of this feature.
SADDR =
SADEN =
Given
SADDR =
SADEN =
Given
SADDR =
SADEN =
Given
SADDR =
SADEN =
Given
SADDR =
SADEN =
Given
=
=
=
=
=
1100 0000
1111 1101
1100 00X0
1100 0000
1111 1110
1100 000X
1100 0000
1111 1001
1100 0XX0
1110 0000
1111 1010
1110 0X0X
1110 0000
1111 1100
1110 00XX
XA-G37
Product data

Related parts for PXAG37KFA,512