P80C592FFA/00,512 NXP Semiconductors, P80C592FFA/00,512 Datasheet - Page 63

IC 80C51 MCU 8BIT ROMLESS 68PLCC

P80C592FFA/00,512

Manufacturer Part Number
P80C592FFA/00,512
Description
IC 80C51 MCU 8BIT ROMLESS 68PLCC
Manufacturer
NXP Semiconductors
Series
80Cr
Datasheet

Specifications of P80C592FFA/00,512

Program Memory Type
ROMless
Package / Case
68-PLCC
Core Processor
8051
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, EBI/EMI, UART/USART
Peripherals
DMA, POR, PWM, WDT
Number Of I /o
48
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
P80C5x
Core
80C51
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
CAN/UART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
40
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Cpu Family
80C
Device Core
80C51
Device Core Size
8b
Frequency (max)
16MHz
Program Memory Size
Not Required
Total Internal Ram Size
512Byte
# I/os (max)
40
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
68
Package Type
PLCC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
Compliant
Other names
568-1241-5
935086530512
P80C592FFAA

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
P80C592FFA/00,512
Manufacturer:
ON
Quantity:
300
Part Number:
P80C592FFA/00,512
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Philips Semiconductors
14 INTERRUPT SYSTEM
External events and the real-time-driven on-chip
peripherals require service by the CPU asynchronous to
the execution of any particular section of code. To tie the
asynchronous activities of these functions to normal
program execution a multiple-source, two-priority-level,
nested interrupt system is provided. Interrupt response
latency is from 2.25 s to 7.5 s when using a 16 MHz
crystal. The latency time strongly depends on the
sequence of instructions executed directly after an
interrupt request. During a CAN-DMA transfer the interrupt
system is disabled (see Section 13.5.17). The P8xC592
acknowledges interrupt requests from fifteen sources as
follows:
Each interrupt vectors to a separate location in Program
Memory for its service program. Each source can be
individually enabled or disabled by a corresponding bit in
the IEN0 or IEN1 register, moreover each interrupt may be
programmed to a HIGH or LOW priority level using a
corresponding bit in the IP0 or IP1 register. Also all
enabled sources can be globally disabled or enabled. Both
external interrupts can be programmed to be
level-activated or transition-activated, and an active LOW
level allows ‘wire-ORing’ of several interrupt sources to the
input pin.
1996 Jun 27
INT0 and INT1: externally via pins 27 and 28
respectively
Timer 0 and Timer 1: from the two internal counters
– If the capture function remains unused and the
Timer T2, 8 separate interrupts:
– 4 capture interrupts
– 3 compare interrupts
– an overflow interrupt
ADC end-of-conversion interrupt
CAN-controller interrupt
UART serial I/O port interrupt.
8-bit microcontroller with on-chip CAN
Capture Register contents are ‘don't care’ then the
corresponding input pins ‘CTnI’, with ‘n = 0 ... 3’, may
be used as positive and/or negative edge triggered
external interrupts INT2 to INT5. But note that they
can not terminate the Idle mode because the Timer 2
is switched off then
63
Product specification
P8xC592

Related parts for P80C592FFA/00,512