MC9S12XEQ512CAL Freescale Semiconductor, MC9S12XEQ512CAL Datasheet - Page 287

no-image

MC9S12XEQ512CAL

Manufacturer Part Number
MC9S12XEQ512CAL
Description
MCU 16BIT 512K FLASH 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12XEQ512CAL

Core Processor
HCS12X
Core Size
16-Bit
Speed
50MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
91
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
32K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
No. Of I/o's
91
Eeprom Memory Size
4KB
Ram Memory Size
32KB
Cpu Speed
50MHz
No. Of Timers
3
No. Of Pwm Channels
8
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Processor Series
S12XE
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
32 KB
Interface Type
CAN, SCI, SPI
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
91
Number Of Timers
25
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
KIT33812ECUEVME, EVB9S12XEP100, DEMO9S12XEP100
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 16 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12XEQ512CAL
Manufacturer:
FOCALTECH
Quantity:
1 100
Part Number:
MC9S12XEQ512CAL
Manufacturer:
FREESCALE
Quantity:
2 400
Part Number:
MC9S12XEQ512CAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12XEQ512CAL
Manufacturer:
FREESCALE
Quantity:
2 400
Freescale Semiconductor
PLLSEL
Because of an order from the United States International Trade Commission, BGA-packaged product lines and partnumbers
CLKSW
UNSEC
indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010
Field
0
0
1
1
2
1
CLKSW
Clock Switch — The CLKSW bit controls which clock the BDM operates with. It is only writable from a hardware
BDM command. A minimum delay of 150 cycles at the clock speed that is active during the data portion of the
command send to change the clock source should occur before the next command can be send. The delay
should be obtained no matter which bit is modified to effectively change the clock source (either PLLSEL bit or
CLKSW bit). This guarantees that the start of the next BDM command uses the new clock for timing subsequent
BDM communications.
Table 7-4
module, the bit is part of the CLKSEL register) bits.
Note: The BDM alternate clock source can only be selected when CLKSW = 0 and PLLSEL = 1. The BDM serial
Note: If the acknowledge function is turned on, changing the CLKSW bit will cause the ACK to be at the new
Note: In emulation modes (if modes available), the CLKSW bit will be set out of RESET.
Unsecure — If the device is secured this bit is only writable in special single chip mode from the BDM secure
firmware. It is in a zero state as secure mode is entered so that the secure BDM firmware lookup table is enabled
and put into the memory map overlapping the standard BDM firmware lookup table.
The secure BDM firmware lookup table verifies that the non-volatile memories (e.g. on-chip EEPROM and/or
Flash EEPROM) are erased. This being the case, the UNSEC bit is set and the BDM program jumps to the start
of the standard BDM firmware lookup table and the secure BDM firmware lookup table is turned off. If the erase
test fails, the UNSEC bit will not be asserted.
0 System is in a secured mode.
1 System is in a unsecured mode.
Note: When UNSEC is set, security is off and the user can change the state of the secure bits in the on-chip
0
1
0
1
interface is now fully synchronized to the alternate clock source, when enabled. This eliminates frequency
restriction on the alternate clock which was required on previous versions. Refer to the device
specification to determine which clock connects to the alternate clock source input.
rate for the write command which changes it.
Flash EEPROM. Note that if the user does not change the state of the bits to “unsecured” mode, the
system will be secured again when it is next taken out of reset.After reset this bit has no meaning or effect
when the security byte in the Flash EEPROM is configured for unsecure mode.
Bus clock dependent on oscillator
Bus clock dependent on oscillator
Alternate clock (refer to the device specification to determine the alternate clock source)
Bus clock dependent on the PLL
shows the resulting BDM clock source based on the CLKSW and the PLLSEL (PLL select in the CRG
Table 7-3. BDMSTS Field Descriptions (continued)
MC9S12XE-Family Reference Manual Rev. 1.23
Table 7-4. BDM Clock Sources
Description
BDMCLK
Chapter 7 Background Debug Module (S12XBDMV2)
287

Related parts for MC9S12XEQ512CAL