ATMEGA48-20PI Atmel, ATMEGA48-20PI Datasheet - Page 35

IC AVR MCU 4K 5V 20MHZ 28-DIP

ATMEGA48-20PI

Manufacturer Part Number
ATMEGA48-20PI
Description
IC AVR MCU 4K 5V 20MHZ 28-DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA48-20PI

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
4KB (2K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.300", 7.62mm)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
ATMEGA48-24PI
ATMEGA48-24PI
8.10
8.11
2545S–AVR–07/10
Timer/Counter Oscillator
System Clock Prescaler
Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.
The device can operate its Timer/Counter2 from an external 32.768 kHz watch crystal or a exter-
nal clock source. The Timer/Counter Oscillator Pins (TOSC1 and TOSC2) are shared with
XTAL1 and XTAL2. This means that the Timer/Counter Oscillator can only be used when an
internal RC Oscillator is selected as system clock source. See
connection.
Applying an external clock source to TOSC1 requires EXTCLK in the ASSR Register written to
logic one. See
on selecting external clock as input instead of a 32 kHz crystal.
The ATmega48/88/168 has a system clock prescaler, and the system clock can be divided by
setting the
decrease the system clock frequency and the power consumption when the requirement for pro-
cessing power is low. This can be used with all clock source options, and it will affect the clock
frequency of the CPU and all synchronous peripherals. clk
divided by a factor as shown in
When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than
neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-
sponding to the new setting. The ripple counter that implements the prescaler runs at the
frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence, it
is not possible to determine the state of the prescaler - even if it were readable, and the exact
time it takes to switch from one clock division to the other cannot be exactly predicted. From the
time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 * T2 before the new
clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the pre-
vious clock period, and T2 is the period corresponding to the new prescaler setting.
To avoid unintentional changes of clock frequency, a special write procedure must befollowed to
change the CLKPS bits:
1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.
Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.
CLKPR to zero.
“CLKPR – Clock Prescale Register” on page
“Asynchronous Operation of Timer/Counter2” on page 150
Table 8-14 on page
37.
I/O
36. This feature can be used to
ATmega48/88/168
, clk
Figure 8-2 on page 29
ADC
, clk
CPU
for further description
, and clk
for crystal
FLASH
are
35

Related parts for ATMEGA48-20PI