ATMEGA48-20PI Atmel, ATMEGA48-20PI Datasheet - Page 39

IC AVR MCU 4K 5V 20MHZ 28-DIP

ATMEGA48-20PI

Manufacturer Part Number
ATMEGA48-20PI
Description
IC AVR MCU 4K 5V 20MHZ 28-DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA48-20PI

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
4KB (2K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.300", 7.62mm)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Other names
ATMEGA48-24PI
ATMEGA48-24PI
9.3
9.4
9.5
2545S–AVR–07/10
ADC Noise Reduction Mode
Power-down Mode
Power-save Mode
Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the 2-
wire Serial Interface address watch, Timer/Counter2
(if enabled). This sleep mode basically halts clk
clocks to run.
This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog Interrupt, a Brown-out Reset, a 2-wire Serial Interface address match, a
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0
or INT1 or a pin change interrupt can wake up the MCU from ADC Noise Reduction mode.
Note:
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-
wire Serial Interface address watch, and the Watchdog continue operating (if enabled). Only an
External Reset, a Watchdog System Reset, a Watchdog Interrupt, a Brown-out Reset, a 2-wire
Serial Interface address match, an external level interrupt on INT0 or INT1, or a pin change
interrupt can wake up the MCU. This sleep mode basically halts all generated clocks, allowing
operation of asynchronous modules only.
Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to
for details.
When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in
When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:
If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from
either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in
SREG is set.
1. Timer/Counter2 will only keep running in asynchronous mode, see
PWM and Asynchronous Operation” on page 139
“Clock Sources” on page
I/O
, clk
(1)
CPU
, and the Watchdog to continue operating
for details.
, and clk
ATmega48/88/168
“External Interrupts” on page 65
27.
FLASH
, while allowing the other
“8-bit Timer/Counter2 with
39

Related parts for ATMEGA48-20PI