ATMEGA88V-10AU Atmel, ATMEGA88V-10AU Datasheet - Page 202

IC AVR MCU 8K 10MHZ 1.8V 32TQFP

ATMEGA88V-10AU

Manufacturer Part Number
ATMEGA88V-10AU
Description
IC AVR MCU 8K 10MHZ 1.8V 32TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA88V-10AU

Core Processor
AVR
Core Size
8-Bit
Speed
10MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-TQFP, 32-VQFP
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
2-Wire, SPI, USART, Serial
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
23
Number Of Timers
3 bit
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
32TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
10 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA88V-10AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA88V-10AU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATMEGA88V-10AU
Manufacturer:
ALTERA
0
Part Number:
ATMEGA88V-10AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA88V-10AU
Quantity:
4 800
Part Number:
ATMEGA88V-10AUR
Manufacturer:
Atmel
Quantity:
1 991
Part Number:
ATMEGA88V-10AUR
Manufacturer:
Atmel
Quantity:
10 000
20.6
202
Data Transfer
ATmega48/88/168
Using the USART in MSPI mode requires the Transmitter to be enabled, that is, the TXENn bit in
the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling
the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.
When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given
the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer
clock.
After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-
ing to the UDRn I/O location. This is the case for both sending and receiving data since the
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit buf-
fer to the shift register when the shift register is ready to send a new frame.
Note:
The following code examples show a simple USART in MSPIM mode transfer function based on
polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The
USART has to be initialized before the function can be used. For the assembly code, the data to
be sent is assumed to be stored in Register R16 and the data received will be available in the
same register (R16) after the function returns.
The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value.
To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, that is, if an overflow occurs the character last received will be lost, not the first data in the
buffer. This means that if four bytes are transferred, byte 1 first, then byte 2, byte 3, and byte 4,
and the UDRn is not read before all transfers are completed, then byte 3 to be received will be lost,
and not byte 1.
2545S–AVR–07/10

Related parts for ATMEGA88V-10AU