MC908AZ32ACFU Freescale Semiconductor, MC908AZ32ACFU Datasheet - Page 211

no-image

MC908AZ32ACFU

Manufacturer Part Number
MC908AZ32ACFU
Description
IC MCU 32K FLASH 8.4MHZ 64-QFP
Manufacturer
Freescale Semiconductor
Series
HC08r
Datasheet

Specifications of MC908AZ32ACFU

Core Processor
HC08
Core Size
8-Bit
Speed
8MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM
Number Of I /o
40
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 15x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-QFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC908AZ32ACFU
Manufacturer:
FREESCALE
Quantity:
3
Part Number:
MC908AZ32ACFU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AZ32ACFU
Manufacturer:
MOTOROLA/摩托罗拉
Quantity:
20 000
Part Number:
MC908AZ32ACFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC908AZ32ACFUE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC908AZ32ACFUER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIMB to
set the pin if the state of the PWM pulse is logic 0.
The value in the TIMB counter modulo registers and the selected prescaler output determines the
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing
$00FF (255) to the TIMB counter modulo registers produces a PWM period of 256 times the internal bus
clock period if the prescaler select value is $000
The value in the TIMB channel registers determines the pulse width of the PWM output. The pulse width
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIMB channel registers
produces a duty cycle of 128/256 or 50%.
19.3.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as described in
Modulation
pulse width value over the value currently in the TIMB channel registers.
An unsynchronized write to the TIMB channel registers to change a pulse width value could cause
incorrect operation for up to two PWM periods. For example, writing a new value before the counter
reaches the old value but after the counter reaches the new value prevents any compare during that PWM
period. Also, using a TIMB overflow interrupt routine to write a new, smaller pulse width value may cause
the compare to be missed. The TIMB may pass the new value before it is written to the TIMB channel
registers.
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:
Freescale Semiconductor
When changing to a shorter pulse width, enable channel x output compare interrupts and write the
new value in the output compare interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the PWM period to write the new
value.
When changing to a longer pulse width, enable TIMB overflow interrupts and write the new value
in the TIMB overflow interrupt routine. The TIMB overflow interrupt occurs at the end of the current
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current
pulse) could cause two output compares to occur in the same PWM period.
(PWM). The pulses are unbuffered because changing the pulse width requires writing the new
PTEx/TCHx
In PWM signal generation, do not program the PWM channel to toggle on
output compare. Toggling on output compare prevents reliable 0% duty
cycle generation and removes the ability of the channel to self-correct in the
OVERFLOW
Figure 19-3. PWM Period and Pulse Width
PULSE
WIDTH
PERIOD
MC68HC908AZ32A Data Sheet, Rev. 2
COMPARE
OUTPUT
OVERFLOW
19.8.1 TIMB Status and Control
NOTE
COMPARE
OUTPUT
OVERFLOW
Register.
COMPARE
Functional Description
OUTPUT
19.3.4 Pulse Width
211

Related parts for MC908AZ32ACFU