AGL030V2-CSG81 Actel, AGL030V2-CSG81 Datasheet - Page 9

no-image

AGL030V2-CSG81

Manufacturer Part Number
AGL030V2-CSG81
Description
FPGA - Field Programmable Gate Array 30K System Gates IGLOO
Manufacturer
Actel
Datasheet

Specifications of AGL030V2-CSG81

Processor Series
AGL030
Core
IP Core
Maximum Operating Frequency
526.32 MHz, 892.86 MHz
Number Of Programmable I/os
66
Supply Voltage (max)
1.575 V
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
0 C
Development Tools By Supplier
AGL-Icicle-Kit, AGL-Dev-Kit-SCS, Silicon-Explorer II, Silicon-Sculptor 3, SI-EX-TCA, FlashPro 4, FlashPro 3, FlashPro Lite
Mounting Style
SMD/SMT
Supply Voltage (min)
1.14 V
Number Of Gates
30 K
Package / Case
CSP-81
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AGL030V2-CSG81
Manufacturer:
NVIDIA
Quantity:
7
Part Number:
AGL030V2-CSG81
Manufacturer:
ACTEL/爱特
Quantity:
20 000
† The AGL015 and AGL030 do not support PLL or SRAM.
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-
based FPGAs, Flash-based IGLOO devices allow all functionality to be live at power-up; no external boot
PROM is required. On-board security mechanisms prevent access to all the programming information
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system
reprogramming to support future design iterations and field upgrades with confidence that valuable
intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-
standard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at
higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution,
especially for applications in the consumer, networking/communications, computing, and avionics
markets.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based
FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered
by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user
data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction
(EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes
of operation.
Advanced Architecture
The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO
device consists of five distinct and programmable architectural features
Figure 1-2 on page
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT)
equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile
capability is unique to the Actel ProASIC
are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout
the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is
possible for virtually any design.
Flash*Freeze technology
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM/FIFO memory
Extensive CCCs and PLLs
Advanced I/O structure
1-4):
®
family of third-generation-architecture flash FPGAs. VersaTiles
R ev i si o n 1 8
IGLOO Low Power Flash FPGAs
(Figure 1-1 on page 1-4
and
1 -3

Related parts for AGL030V2-CSG81