LFXP6C-5QN208C LATTICE SEMICONDUCTOR, LFXP6C-5QN208C Datasheet

FPGA, 1.8V FLASH, INSTANT ON, SMD

LFXP6C-5QN208C

Manufacturer Part Number
LFXP6C-5QN208C
Description
FPGA, 1.8V FLASH, INSTANT ON, SMD
Manufacturer
LATTICE SEMICONDUCTOR
Series
LatticeXPr
Datasheet

Specifications of LFXP6C-5QN208C

No. Of Logic Blocks
720
No. Of Macrocells
3000
Family Type
LatticeXP
No. Of Speed Grades
5
No. Of I/o's
142
Clock Management
PLL
Core Supply Voltage Range
1.71V To 3.465V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LFXP6C-5QN208C
Manufacturer:
Lattice Semiconductor Corporation
Quantity:
10 000
LatticeXP Family Data Sheet
DS1001 Version 05.1, November 2007

Related parts for LFXP6C-5QN208C

LFXP6C-5QN208C Summary of contents

Page 1

LatticeXP Family Data Sheet DS1001 Version 05.1, November 2007 ...

Page 2

... Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 3

... Lattice Semiconductor Introduction The LatticeXP family of FPGA devices combine logic gates, embedded memory and high performance I/ single architecture that is both non-volatile and infinitely reconfigurable to support cost-effective system designs. The re-programmable non-volatile technology used in the LatticeXP family is the next generation ispXP™ technol- ogy ...

Page 4

... Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 5

... Lattice Semiconductor Figure 2-1. LatticeXP Top Level Block Diagram Programmable I/O Cell (PIC) includes sysIO Interface Non-volatile Memory sysCONFIG Programming Port (includes dedicated and dual use pins) Programmable Functional Unit (PFU) PFU and PFF Blocks The core of the LatticeXP devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions ...

Page 6

... Lattice Semiconductor Slice Each slice contains two LUT4 lookup tables feeding two registers (programmed Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions ...

Page 7

... Lattice Semiconductor Table 2-1. Slice Signal Descriptions Function Type Input Data signal Input Data signal Input Multi-purpose Input Multi-purpose Input Control signal Input Control signal Input Control signal Input Inter-PFU signal Output Data signals Output Data signals Output Data signals Output ...

Page 8

... Lattice Semiconductor The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft- ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the dis- tributed memory primitive block diagrams ...

Page 9

... Lattice Semiconductor Table 2-4. PFU Modes of Operation Logic LUT 4x8 or MUX 2x1 x 8 LUT 5x4 or MUX 4x1 x 4 LUT MUX 8x1 x 2 LUT 7x1 or MUX 16x1 These modes are not available in PFF blocks Routing There are many resources provided in the LatticeXP devices to route signals individually or as buses with related control signals ...

Page 10

... Lattice Semiconductor Figure 2-5. Primary Clock Sources PLL Input Clock Input PLL Input Note: Smaller devices have two PLLs. Secondary Clock Sources LatticeXP devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-6 ...

Page 11

... Lattice Semiconductor Figure 2-6. Secondary Clock Sources From Routing From Routing Clock Input From Routing From Routing Clock Routing The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock net- work per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this clock routing ...

Page 12

... Lattice Semiconductor Figure 2-8. Per Quadrant Secondary Clock Selection 20 Secondary Clock Feedlines : 4 Clock Input Pads + 16 Routing Signals Figure 2-9. Slice Clock Selection Primary Clock Secondary Clock sysCLOCK Phase Locked Loops (PLLs) The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback sig- nals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock (PIN or logic) ...

Page 13

... Lattice Semiconductor Figure 2-10. PLL Diagram RST Input Clock Divider (CLKI) CLKI (from routing or external pin) Feedback CLKFB from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic) Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block. ...

Page 14

... Lattice Semiconductor For more information on the PLL, please see details of additional technical documentation at the end of this data sheet. Dynamic Clock Select (DCS) The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is toggled ...

Page 15

... Lattice Semiconductor Table 2-6. sysMEM Block Configurations Bus Size Matching All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port ...

Page 16

... Lattice Semiconductor Figure 2-14. sysMEM Memory Primitives AD[12:0] DI[35:0] CLK CE RST WE CS[2:0] Single Port RAM AD[12:0] CLK CE RST CS[2:0] The EBR memory supports three forms of write behavior for single port or dual port operation: 1. Normal – data on the output appears only during read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths. 2. Write Through -þ ...

Page 17

... Lattice Semiconductor Figure 2-15. Memory Core Reset RSTA RSTB GSRN For further information on sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet. EBR Asynchronous Reset EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16 ...

Page 18

... Lattice Semiconductor Figure 2-17. PIC Diagram TD OPOS1 ONEG1 OPOS0 ONEG0 INCK INDD INFF IPOS0 IPOS1 CLK CE LSR GSRN DQS DDRCLKPOL In the LatticeXP family, seven PIOs or four (3.5) PICs are grouped together to provide two LVDS differential pairs, one PIC pair and one single I/O, as shown in Figure 2-18. ...

Page 19

... Lattice Semiconductor Figure 2-18. Group of Seven PIOs Four PICs Figure 2-19. DQS Routing DQS PIO The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along with the necessary clock and selection logic ...

Page 20

... Lattice Semiconductor in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time require- ment when using a global clock. The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the registers in the single data rate sync register block, with the system clock ...

Page 21

... Lattice Semiconductor Figure 2-21. Input Register DDR Waveforms DI (In DDR Mode) DQS DQS Delayed D0 D2 Figure 2-22. INDDRXB Primitive Output Register Block The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for DDR operation ...

Page 22

... Lattice Semiconductor Figure 2-23. Output Register Block ONEG0 From Routing OPOS0 CLK1 Figure 2-24. ODDRXB Primitive Tristate Register Block The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation ...

Page 23

... Lattice Semiconductor Figure 2-25. Tristate Register Block TD ONEG1 From Routing OPOS1 CLK1 Control Logic Block The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from the programmable DQS pin ...

Page 24

... Lattice Semiconductor Figure 2-26. DQS Local Bus Delay Control Bus Polarity Control Bus DQS Bus DQS DQS Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution Delay Control Bus PIO Input Register Block ( 5 Flip Flops) To Sync. Reg. GSR CLKI CEI To DDR DQS Reg ...

Page 25

... Lattice Semiconductor Polarity Control Logic In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the internal system Clock (during the READ cycle) is unknown. The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is used ...

Page 26

... Lattice Semiconductor Figure 2-28. LatticeXP Banks V CCIO7 V REF1(7) V REF2(7) GND V CCIO6 V REF1(6) V REF2(6) GND Note: N and M are the maximum number of I/Os per bank. LatticeXP devices contain two types of sysIO buffer pairs. 1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only) ...

Page 27

... Lattice Semiconductor Typical I/O Behavior During Power-up The internal power-on-reset (POR) signal is deactivated when V After the POR signal is deactivated, the FPGA core logic becomes active the user’s responsibility to ensure that all other V banks are active with valid input logic levels to properly control the output logic states of all the CCIO I/O banks that are critical to the application ...

Page 28

... Lattice Semiconductor Table 2-8. Supported Output Standards Output Standard Single-ended Interfaces LVTTL LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 LVCMOS33, Open Drain LVCMOS25, Open Drain LVCMOS18, Open Drain LVCMOS15, Open Drain LVCMOS12, Open Drain PCI33 HSTL18 Class I, II, III HSTL15 Class I, III SSTL3 Class I, II ...

Page 29

... Lattice Semiconductor Table 2-9. Characteristics of Normal, Off and Sleep Modes Characteristic SLEEPN Pin Static Icc I/O Leakage Power Supplies VCC/VCCIO/VCCAUX Logic Operation I/O Operation JTAG and Programming circuitry EBR Contents and Registers SLEEPN Pin Characteristics The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up typically in the order of 10µ ...

Page 30

... Lattice Semiconductor Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the Lattic- eXP devices. On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial mode can be activated any time after power-up by sending the appropriate command through the TAP port. ...

Page 31

... Lattice Semiconductor master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different Master Serial Clock is selected during the design process, the following sequence takes place: 1. User selects a different Master Serial Clock frequency for configuration. 2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency. ...

Page 32

... CCAUX © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 33

... Lattice Semiconductor Hot Socketing Specifications Symbol Parameter I Input or I/O Leakage Current DK 1. Insensitive to sequence CC, CCAUX 2. 0  V  V (MAX  V  CCAUX 3. 0  V  V (MAX) for top and bottom I/O banks. CCIO CCIO 4. 0.2  V  V (MAX) for left and right I/O banks. ...

Page 34

... Parameter LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C All LFXP ‘C’ Devices LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C LFXP3C LFXP6C 5 LFXP10C LFXP15C LFXP20C All LFXP ‘C’ Devices 3-3 DC and Switching Characteristics LatticeXP Family Data Sheet Min. Typ. Max. — — 10 — — ...

Page 35

... Frequency 0MHz. 4. User pattern: blank =25°C, power supplies at nominal voltage Per bank Over Recommended Operating Conditions Device LFXP3E LFXP6E LFXP10E LFXP15E LFXP20E LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C All LFXP3E/C LFXP6E/C LFXP10E/C LFXP15E/C LFXP20E/C 6 All All 3-4 DC and Switching Characteristics LatticeXP Family Data Sheet 5 Typ ...

Page 36

... Assume normal bypass capacitor/decoupling capacitor across the supply =25°C, power supplies at nominal voltage Over Recommended Operating Conditions Device LFXP3E LFXP6E LFXP10E LFXP15E LFXP20E LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C LFXP3E/C LFXP6E/C LFXP10E/C LFXP15 /C LFXP20E/C All 3-5 DC and Switching Characteristics LatticeXP Family Data Sheet 7 Typ ...

Page 37

... Bypass or decoupling capacitor across the supply. 5. JTAG programming is at 1MHz =25°C, power supplies at nominal voltage When programming via JTAG. DC and Switching Characteristics Device LFXP3E LFXP6E LFXP10E LFXP15E LFXP20E LFXP3C LFXP6C LFXP10C LFXP15C LFXP20C LFXP3E/C LFXP6E/C LFXP10E/C LFXP15E/C LFXP20E/C 7 All 3-6 LatticeXP Family Data Sheet .6 Typ ...

Page 38

... Lattice Semiconductor sysIO Recommended Operating Conditions Standard Min. LVCMOS 3.3 3.135 LVCMOS 2.5 2.375 LVCMOS 1.8 1.71 LVCMOS 1.5 1.425 LVCMOS 1.2 1.14 LVTTL 3.135 PCI33 3.135 SSTL18 Class I 1.71 SSTL2 Class I, II 2.375 SSTL3 Class I, II 3.135 HSTL15 Class I 1.425 HSTL15 Class III 1 ...

Page 39

... Lattice Semiconductor sysIO Single-Ended DC Electrical Characteristics V IL Input/Output Standard Min. (V) Max. (V) LVCMOS 3.3 -0.3 0.8 LVTTL -0.3 0.8 LVCMOS 2.5 -0.3 0.7 LVCMOS 1.8 -0.3 0.35V CCIO LVCMOS 1.5 -0.3 0.35V CCIO LVCMOS 1.2 -0.3 0.42 (“C” Version) LVCMOS 1.2 -0 ...

Page 40

... Lattice Semiconductor sysIO Differential Electrical Characteristics LVDS Parameter Symbol Parameter Description V V Input Voltage INP, INM V Differential Input Threshold THD V Input Common Mode Voltage CM I Input current IN V Output high voltage for Output low voltage for Output voltage differential OD Change in V between high and  ...

Page 41

... Lattice Semiconductor Differential HSTL and SSTL Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allow- able single-ended output classes (class I and class II) are supported in this mode. LVDS25E The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS out- puts in conjunction with a parallel resistor across the driver outputs ...

Page 42

... Lattice Semiconductor Figure 3-2. BLVDS Multi-point Output Example 2.5V 100 45-90 ohms, +/- 1% 2.5V 100 + + - - 2.5V 100 Table 3-2. BLVDS DC Conditions Symbol Z OUT R TLEFT R TRIGHT For input buffer, see LVDS table. Heavily loaded backplane, effective ohms differential % . . . . . . 2.5V 2.5V 100 1 Over Recommended Operating Conditions ...

Page 43

... Lattice Semiconductor LVPECL The LatticeXP devices support differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point- to-point signals ...

Page 44

... Lattice Semiconductor Figure 3-4. RSDS (Reduced Swing Differential Standard) VCCIO = 2.5V VCCIO = 2.5V On-chip Emulated RSDS Buffer Table 3-4. RSDS DC Conditions Parameter Z OUT BACK 100 Description Output impedance Driver series resistor Driver parallel resistor Receiver termination Output high voltage Output low voltage ...

Page 45

... Lattice Semiconductor Typical Building Block Function Performance Pin-to-Pin Performance (LVCMOS25 12 mA Drive) Function Basic Functions 16-bit decoder 32-bit decoder 64-bit decoder 4:1 MUX 8:1 MUX 16:1 MUX 32:1 MUX Register to Register Performance Function Basic Functions 16-bit decoder 32-bit decoder 64-bit decoder ...

Page 46

... Lattice Semiconductor Derating Logic Timing Logic timing provided in the following sections of this data sheet and in the ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process can be much better than the values given in the tables. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage ...

Page 47

... Lattice Semiconductor LatticeXP External Switching Characteristics Parameter Description General I/O Pin Parameters (Using Primary Clock without PLL) t Clock to Output - PIO Output Register CO t Clock to Data Setup - PIO Input Register SU t Clock to Data Hold - PIO Input Register H Clock to Data Setup - PIO Input Register ...

Page 48

... Lattice Semiconductor Figure 3-5. DDR Timings DQ and DQS Read Timings DQS DQ DQ and DQS Write Timings DQS DQ DC and Switching Characteristics LatticeXP Family Data Sheet t DVADQ t DVEDQ t DQVBS t DQVAS 3-17 ...

Page 49

... Lattice Semiconductor LatticeXP Internal Timing Parameters Parameter PFU/PFF Logic Mode Timing t LUT4 Delay ( Inputs to F Output) LUT4_PFU t LUT6 Delay ( Inputs to OFX Output) LUT6_PFU t Set/Reset to Output of PFU LSR_PFU t Clock to Mux (M0,M1) Input Setup Time SUM_PFU t Clock to Mux (M0,M1) Input Hold Time HM_PFU ...

Page 50

... Lattice Semiconductor LatticeXP Internal Timing Parameters Parameter Reset To Output Delay Time from EBR Output t RSTO_EBR Register PLL Parameters t Reset Recovery to Rising Clock RSTREC t Reset Signal Setup Time RSTSU 1. Internal parameters are characterized but not tested on every device. Timing v.F0.11 1 (Continued) Over Recommended Operating Conditions Description Min ...

Page 51

... Lattice Semiconductor Timing Diagrams PFU Timing Diagrams Figure 3-6. Slice Single/Dual Port Write Cycle Timing Figure 3-7. Slice Single /Dual Port Read Cycle Timing WRE AD[3:0] DO[1:0] CK WRE AD AD[3:0] DI[1:0] D DO[1:0] Old Data Old Data 3-20 DC and Switching Characteristics LatticeXP Family Data Sheet ...

Page 52

... Lattice Semiconductor EBR Memory Timing Diagrams Figure 3-8. Read Mode (Normal) CLKA CSA WEA ADA DIA D0 DOA Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. Figure 3-9. Read Mode with Input and Output Registers ...

Page 53

... Lattice Semiconductor Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only) CLKA CSA WEA ADA DIA DOA Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock. Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only) ...

Page 54

... Lattice Semiconductor LatticeXP Family Timing Adders Buffer Type Description Input Adjusters LVDS25E LVDS 2.5 Emulated LVDS25 LVDS BLVDS25 BLVDS LVPECL33 LVPECL HSTL18_I HSTL_18 class I HSTL18_II HSTL_18 class II HSTL18_III HSTL_18 class III HSTL18D_I Differential HSTL 18 class I HSTL18D_II Differential HSTL 18 class II HSTL18D_III Differential HSTL 18 class III ...

Page 55

... Lattice Semiconductor LatticeXP Family Timing Adders Buffer Type Description HSTL15_I HSTL_15 class I HSTL15_III HSTL_15 class III HSTL15D_I Differential HSTL 15 class I HSTL15D_III Differential HSTL 15 class III SSTL33_I SSTL_3 class I SSTL33_II SSTL_3 class II SSTL33D_I Differential SSTL_3 class I SSTL33D_II Differential SSTL_3 class II SSTL25_I SSTL_2 class I ...

Page 56

... Lattice Semiconductor sysCLOCK PLL Timing Parameter Descriptions f Input Clock Frequency (CLKI, CLKFB Output Clock Frequency (CLKOP, CLKOS) OUT f K-Divider Output Frequency (CLKOK) OUT2 f PLL VCO Frequency VCO f Phase Detector Input Frequency PFD AC Characteristics t Output Clock Duty Cycle Output Phase Accuracy Output Clock Period Jitter ...

Page 57

... Lattice Semiconductor LatticeXP sysCONFIG Port Timing Specifications Parameter sysCONFIG Byte Data Flow t Byte D[0:7] Setup Time to CCLK SUCBDI t Byte D[0:7] Hold Time to CCLK HCBDI t Clock to Dout in Flowthrough Mode CODO t CS[0:1] Setup Time to CCLK SUCS t CS[0:1] Hold Time to CCLK HCS t Write Signal Setup Time to CCLK ...

Page 58

... Lattice Semiconductor Flash Download Time Symbol PROGRAMN Low-to- t High. Transition to Done REFRESH High. JTAG Port Timing Specifications Symbol f MAX t TCK [BSCAN] clock pulse width BTCP t TCK [BSCAN] clock pulse width high BTCPH t TCK [BSCAN] clock pulse width low BTCPL t TCK [BSCAN] setup time ...

Page 59

... Lattice Semiconductor Switching Test Conditions Figure 3-13 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5. Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces Test Condition LVTTL and other LVCMOS settings (L -> ...

Page 60

... PCLK[T, C]_[n:0]_[3:0] [LOC]DQS[num] © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 61

... Lattice Semiconductor Signal Descriptions (Cont.) Signal Name Test and Programming (Dedicated pins. Pull-up is enabled on input pins during configuration.) TMS TCK TDI TDO V CCJ Configuration Pads (used during sysCONFIG) CFG[1:0] INITN PROGRAMN DONE CCLK BUSY CSN CS1N WRITEN D[7:0] DOUT, CSON DI 2 SLEEPN ...

Page 62

... Lattice Semiconductor PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin PICs Associated with DQS Strobe P[Edge] [n-4] P[Edge] [n-3] P[Edge] [n-2] P[Edge] [n-1] P[Edge] [n] P[Edge] [n+1] P[Edge] [n+2] P[Edge] [n+3] Notes: 1. “n” row/column PIC number. 2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR data (DQ) pins may not be available ...

Page 63

... Lattice Semiconductor Pin Information Summary Pin Type Single Ended User I/O 2 Differential Pair User I/O Dedicated Configuration Muxed TAP Dedicated (total without supplies CCAUX V CCPLL Bank0 Bank1 Bank2 Bank3 V CCIO Bank4 Bank5 Bank6 Bank7 GND GND PLL NC Bank0 Bank1 Bank2 Bank3 ...

Page 64

... Lattice Semiconductor Pin Information Summary Pin Type 256 fpBGA 388 fpBGA 256 fpBGA 388 fpBGA 484 fpBGA 256 fpBGA 388 fpBGA 484 fpBGA Single Ended User I/O 188 2 Differential Pair User I/O 76 Dedicated 11 Configuration Muxed 14 TAP 5 Dedicated 6 (total without supplies CCAUX ...

Page 65

... Lattice Semiconductor Power Supply and NC Connections Signals 100 TQFP 144 TQFP V 28, 77 14, 39, 73, 112 133 CCIO0 V 82 119 CCIO1 CCIO2 CCIO3 V 47 61, 68 CCIO4 CCIO5 CCIO6 CCIO7 V 73 108 CCJ CCP0 CCP1 V 25, 71 36, 106 CCAUX 1 GND 10, 18, 21, 33, 43, ...

Page 66

... Lattice Semiconductor LFXP3 Logic Signal Connections: 100 TQFP Pin Number Pin Function 1 CFG1 2 DONE 3 PROGRAMN 4 CCLK 5 PL3A 6 PL3B 7 VCCIO7 8 PL5A 9 PL6B 10 GNDIO7 11 PL7A 12 PL7B 13 PL8A 14 PL8B 15 PL9A 16 PL9B 17 VCCP0 18 GNDP0 19 PL12A 20 PL12B 21 GNDIO6 22 VCCIO6 23 PL18A 24 PL18B 25 VCCAUX 26 SLEEPN 27 INITN 28 VCC 29 PB2B ...

Page 67

... Lattice Semiconductor LFXP3 Logic Signal Connections: 100 TQFP (Cont.) Pin Number Pin Function 44 GNDIO4 45 PB15A 46 PB15B 47 VCCIO4 48 PB19A 49 PB19B 50 PB24A 51 PR18B 52 GNDIO3 53 PR18A 54 PR15B 55 PR14A 56 PR13B 57 PR13A 58 VCCIO3 59 GNDP1 60 VCCP1 61 PR9B 62 PR9A 63 PR8B 64 PR8A 65 VCCIO2 66 PR6B 67 PR5A 68 GNDIO2 69 PR3B 70 PR3A 71 VCCAUX ...

Page 68

... Lattice Semiconductor LFXP3 Logic Signal Connections: 100 TQFP (Cont.) Pin Number Pin Function 88 PT14B 89 PT13B 90 GNDIO0 91 PT13A 92 PT12B 93 PT12A 94 VCCIO0 95 PT9A 96 PT8A 97 PT6A 98 PT5A 99 GND 100 CFG0 1. Applies to LFXP “C” only. 2. Applies to LFXP “E” only. 3. Supports dedicated LVDS outputs. ...

Page 69

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP LFXP3 Pin Number Pin Function Bank Differential 1 PROGRAMN 7 2 CCLK GND 4 PL2A 7 5 PL2B 7 6 PL3A 7 7 PL3B 7 8 VCCIO7 7 9 PL5A 7 10 PL6B 7 11 GNDIO7 7 12 PL7A 7 13 PL7B VCC ...

Page 70

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 47 PB11A 5 48 PB11B 5 49 VCCIO5 5 50 PB12A 5 51 PB12B 5 52 PB13A 5 53 PB13B GND 55 PB14A 4 56 GNDIO4 4 57 PB14B 4 58 PB15A 4 59 PB15B ...

Page 71

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 93 PR9A 2 94 PR8B 2 95 PR8A 2 96 PR7B 2 97 PR7A 2 98 VCCIO2 2 99 PR6B 2 100 PR5A 2 101 GNDIO2 2 102 PR3B 2 103 PR3A 2 104 PR2B ...

Page 72

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 139 PT6A 0 140 PT5A 0 141 PT3B 0 142 CFG0 0 143 CFG1 0 144 DONE 0 1. Applies to LFXP “C” only. 2. Applies to LFXP “E” only. ...

Page 73

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP LFXP3 Pin Number Pin Function Bank Differential 1 CFG1 0 2 DONE 0 3 PROGRAMN 7 4 CCLK GND 6 PL2A 7 7 GNDIO7 7 8 PL2B 7 9 PL3A 7 10 PL3B 7 11 PL4A 7 12 PL4B 7 13 VCCIO7 7 14 ...

Page 74

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 47 GNDIO6 6 48 PL18B GND - 50 VCCAUX SLEEPN /TOE - 52 INITN VCC 54 PB2B 5 55 PB3A 5 56 PB3B 5 57 PB4A 5 58 PB4B 5 59 GNDIO5 5 60 PB5A 5 61 ...

Page 75

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 93 PB19B 4 94 PB20A 4 95 PB20B 4 96 PB21A 4 97 VCCIO4 4 98 PB21B 4 99 PB22A 4 100 PB22B 4 101 PB23A 4 102 PB23B 4 103 PB24A 4 104 PB24B ...

Page 76

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 139 PR7A 2 140 VCCIO2 2 141 PR6B 2 142 PR5A 2 143 GNDIO2 2 144 PR4B 2 145 PR4A 2 146 PR3B 2 147 PR3A 2 148 PR2B 2 149 VCCIO2 2 150 ...

Page 77

... Lattice Semiconductor LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.) LFXP3 Pin Number Pin Function Bank Differential 185 PT13A 0 186 PT12B 0 187 PT12A 0 188 PT11B 0 189 VCCIO0 0 190 PT11A 0 191 PT10B 0 192 PT9A 0 193 PT8B 0 194 GNDIO0 0 195 PT8A 0 196 ...

Page 78

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA LFXP6 Ball Ball Number Function Bank Differential C2 PROGRAMN 7 C1 CCLK 7 - GNDIO7 7 D2 PL3A 7 D3 PL3B 7 D1 PL2A 7 E2 PL5A 7 - GNDIO7 7 E1 PL7A 7 F1 PL7B 7 E3 PL12A 7 F4 PL12B 7 F3 PL4A 7 F2 ...

Page 79

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.) LFXP6 Ball Ball Number Function Bank Differential K4 PL20A 6 K5 PL20B 6 - GNDIO6 6 N1 PL23B 6 N2 PL21B 6 P1 PL24A 6 P2 PL24B 6 L5 PL25A 6 M6 PL25B 6 M3 PL26A 6 - GNDIO6 6 N3 PL26B SLEEPN /TOE ...

Page 80

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.) LFXP6 Ball Ball Number Function Bank Differential R8 PB16A 5 T9 PB16B 5 R9 PB17A 4 - GNDIO4 4 P9 PB17B 4 T10 PB18A 4 T11 PB18B 4 R10 PB19A 4 P10 PB19B 4 N9 PB20A 4 M9 PB21B 4 R12 PB22A 4 - GNDIO4 ...

Page 81

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.) LFXP6 Ball Ball Number Function Bank Differential L15 PR21B 3 L14 PR21A 3 - GNDIO3 3 L12 PR17B 3 M16 PR20B 3 N16 PR20A 3 K14 PR19B 3 K15 PR19A 3 K12 PR17A 3 K13 PR22A 3 - GNDIO3 3 L16 PR18B 3 K16 ...

Page 82

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.) LFXP6 Ball Ball Number Function Bank Differential E16 TDO - D16 VCCJ - D14 TDI - C14 TMS - B14 TCK - - GNDIO1 1 A15 PT31B 1 B15 PT31A 1 - GNDIO1 1 D12 PT28A 1 C11 PT30A 1 A14 PT29B 1 B13 ...

Page 83

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.) LFXP6 Ball Ball Number Function Bank Differential E8 PT13B 0 D8 PT12A 0 A6 PT11B 0 - GNDIO0 0 C6 PT11A 0 E7 PT10B 0 D7 PT10A 0 A5 PT9B 0 B5 PT9A 0 A4 PT8B 0 B6 PT8A 0 E6 PT7B 0 - GNDIO0 ...

Page 84

... Lattice Semiconductor LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.) LFXP6 Ball Ball Number Function Bank Differential K10 GND - K7 GND - K8 GND - K9 GND - L11 GND - L6 GND - T1 GND - T16 GND - D13 VCC - D4 VCC - E12 VCC - E5 VCC - M12 VCC - M5 VCC - N13 VCC - N4 VCC ...

Page 85

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA LFXP15 Ball Ball Number Function Bank Differential C2 PROGRAMN 7 C1 CCLK 7 - GNDIO7 7 - GNDIO7 7 D2 PL7A 7 D3 PL7B 7 D1 PL9A 7 E2 PL10B 7 E1 PL11A 7 F1 PL11B 7 - GNDIO7 7 E3 PL12A 7 F4 PL12B 7 F3 PL13A ...

Page 86

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential L4 PL32A 6 - GNDIO6 6 K4 PL33A 6 K5 PL33B 6 N1 PL35A 6 N2 PL36B 6 P1 PL37A 6 P2 PL37B 6 - GNDIO6 6 L5 PL38A 6 M6 PL38B 6 M3 PL39A 6 N3 PL39B ...

Page 87

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential T7 PB23B 5 - GNDIO5 5 P8 PB24A 5 T8 PB24B 5 R8 PB25A 5 T9 PB25B 5 R9 PB26A 4 P9 PB26B 4 T10 PB27A 4 T11 PB27B 4 - GNDIO4 4 R10 PB28A 4 P10 PB28B ...

Page 88

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential P16 PR37B 3 R16 PR37A 3 M15 PR36B 3 N14 PR35A 3 - GNDIO3 3 M14 PR33B 3 L13 PR33A 3 L15 PR32B 3 L14 PR32A 3 L12 PR30A 3 M16 PR29B 3 N16 PR29A ...

Page 89

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential - GNDIO2 2 F15 PR10B 2 E15 PR9A 2 F14 PR8B 2 E14 PR8A 2 D15 PR7B 2 C15 PR7A 2 - GNDIO2 2 E16 TDO - D16 VCCJ - D14 TDI - C14 TMS - B14 ...

Page 90

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential A9 PT27A 1 C9 PT26B 1 C8 PT26A 1 E9 PT25B 0 - GNDIO0 0 B8 PT25A 0 A8 PT24B 0 A7 PT24A 0 B7 PT23B 0 C7 PT23A 0 E8 PT22B 0 D8 PT21A 0 A6 ...

Page 91

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential G10 GND - G7 GND - G8 GND - G9 GND - H10 GND - H7 GND - H8 GND - H9 GND - J10 GND - J7 GND - J8 GND - J9 GND - K10 GND - K7 GND - K8 GND - K9 GND - L11 GND - L6 GND ...

Page 92

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential L7 VCCIO5 5 L8 VCCIO5 5 J6 VCCIO6 6 K6 VCCIO6 6 G6 VCCIO7 7 H6 VCCIO7 7 1. Applies to LFXP “C” only. 2. Applies to LFXP “E” only. 3. Supports dedicated LVDS outputs. ...

Page 93

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA LFXP10 Ball Ball Number Function Bank Diff. Dual Function F4 PROGRAMN CCLK GNDIO7 PL2A PL2B GNDIO7 PL3A 7 T LUM0_PLLT_FB_A E3 PL3B 7 C LUM0_PLLC_FB_A 3 F3 PL4A PL4B PL5A PL6B 7 - VREF1_7 3 G3 PL7A PL7B ...

Page 94

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function U1 PL25A 6 T LLM0_PLLT_IN_A T2 PL25B 6 C LLM0_PLLC_IN_A 3 V1 PL26A PL26B PL28A PL28B GNDIO6 PL29A PL29B PL30A PL30B PL31A 6 - VREF2_6 R4 PL32B PL33A ...

Page 95

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function Y10 PB11B 5 C AA7 PB12A 5 T AB7 PB12B 5 C VREF2_5 Y7 PB13A GNDIO5 5 - AA8 PB13B 5 C AB8 PB14A PB14B 5 C AB9 ...

Page 96

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function AA20 PB36B 4 C AB21 PB37A 4 T AA21 PB37B 4 C AA22 PB38A 4 T Y21 PB38B GNDIO4 4 - W16 PB39A 4 - W17 - - - Y15 - - - ...

Page 97

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function M21 VCCP1 - - - GNDIO2 M22 PR18B L22 PR18A 2 T K22 PR17B 2 C PCLKC2_0 K21 PR17A 2 T PCLKT2_0 3 L19 PR16B K20 PR16A ...

Page 98

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function C20 PT38A 1 T C21 PT37B 1 C C22 PT37A 1 T B22 PT36B 1 C A21 PT36A 1 T D15 PT35B 1 C D14 PT35A ...

Page 99

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function A7 PT13A PT12B PT12A 0 T C10 PT11B PT11A PT10B 0 C VREF2_0 B6 PT10A PT9B PT8A GNDIO0 PT7B PT7A PT6B PT6A PT5B PT5A ...

Page 100

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function K11 GND - - K12 GND - - K13 GND - - K14 GND - - K9 GND - - L10 GND - - L11 GND - - L12 GND - - L13 GND - - L14 GND - - L9 GND ...

Page 101

... Lattice Semiconductor LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.) LFXP10 Ball Ball Number Function Bank Diff. Dual Function G7 VCCAUX - - T16 VCCAUX - - T7 VCCAUX - - G10 VCCIO0 0 - G11 VCCIO0 VCCIO0 VCCIO0 VCCIO0 0 - G12 VCCIO1 1 - G13 VCCIO1 1 - G14 VCCIO1 1 - G15 VCCIO1 1 - H15 ...

Page 102

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA LFXP15 Ball Ball Number Function Bank Differential F5 PROGRAMN 7 E3 CCLK 7 C1 PL2B 7 - GNDIO7 7 G5 PL3A 7 G6 PL3B 7 F4 PL4A 7 F3 PL4B 7 G4 PL5A 7 G3 PL5B 7 D1 PL6A 7 D2 PL6B 7 - GNDIO7 7 E1 ...

Page 103

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential VCCP0 - N2 GNDP0 - PL23A 6 M3 PL23B 6 R2 PL24A 6 - GNDIO6 6 R1 PL24B 6 N3 PL25A 6 N4 PL25B 6 M5 PL26A 6 N5 PL27B 6 T2 PL28A 6 T1 PL28B 6 - GNDIO6 ...

Page 104

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential T6 PL41A 6 T5 PL41B 6 - GNDIO6 6 U3 PL42A 6 U4 PL42B 6 V4 PL43A 6 1 SLEEPN / TOE W5 INITN GNDIO5 GNDIO5 PB3A 5 Y6 PB3B 5 AA2 PB4A 5 AA3 PB4B ...

Page 105

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential AB5 PB16A 5 AB6 PB16B 5 AA8 PB17A 5 AA9 PB17B 5 W10 PB18A 5 - GNDIO5 5 V10 PB18B 5 AB7 PB19A 5 AB8 PB19B 5 AB9 PB20A 5 AB10 PB20B 5 Y10 PB21A ...

Page 106

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential AB19 PB37A 4 AB20 PB38B 4 - GNDIO4 4 V15 PB39A 4 U15 PB39B 4 Y15 PB40A 4 W15 PB40B 4 AA16 PB41A 4 AA17 PB41B 4 AA18 PB42A 4 AA19 PB42B 4 Y16 PB43A ...

Page 107

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential R18 PR38B 3 R17 PR38A 3 Y22 PR37B 3 Y21 PR37A 3 W22 PR36B 3 W21 PR35A 3 P17 PR34B 3 P18 PR34A 3 - GNDIO3 3 R19 PR33B 3 R20 PR33A 3 V22 PR32B ...

Page 108

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential J21 PR20B 2 J22 PR20A 2 K18 PR19B 2 K19 PR18A 2 - GNDIO2 2 K21 PR17B 2 K20 PR17A 2 H21 PR16B 2 H22 PR16A 2 J20 PR15B 2 J19 PR15A 2 - GNDIO2 2 J17 ...

Page 109

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential D18 - - E18 - - C19 - - C18 - - C21 - - - GNDIO1 1 B21 - - E17 PT48B 1 E16 PT48A 1 C17 PT47B 1 D17 PT47A 1 F17 PT46B 1 F16 PT45A 1 C16 PT44B 1 D16 PT44A ...

Page 110

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential A14 PT30B 1 B14 PT29A 1 C12 PT28B 1 B12 PT28A 1 - GNDIO1 1 D12 PT27B 1 E12 PT27A 1 A13 PT26B 1 A12 PT26A 1 A11 PT25B 0 - GNDIO0 0 A10 PT25A 0 D11 ...

Page 111

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential B3 PT8B 0 A3 PT8A 0 - GNDIO0 0 D7 PT7B 0 C7 PT7A 0 B2 PT6B 0 C2 PT5A 0 C3 PT4B 0 D3 PT4A 0 F7 PT3B 0 E7 PT3A 0 - GNDIO0 GNDIO0 0 E4 ...

Page 112

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential J15 GND - J8 GND - J9 GND - K10 GND - K11 GND - K12 GND - K13 GND - K14 GND - K9 GND - L10 GND - L11 GND - L12 GND - L13 GND ...

Page 113

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential G9 VCC - H15 VCC - H8 VCC - J16 VCC - J7 VCC - K16 VCC - K17 VCC - K6 VCC - K7 VCC - N16 VCC - N17 VCC - N6 VCC - N7 VCC - P16 VCC - P7 VCC - R15 ...

Page 114

... Lattice Semiconductor LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.) LFXP15 Ball Ball Number Function Bank Differential H13 VCCIO1 1 K15 VCCIO2 2 L15 VCCIO2 2 L16 VCCIO2 2 L17 VCCIO2 2 M15 VCCIO3 3 M16 VCCIO3 3 M17 VCCIO3 3 N15 VCCIO3 3 R12 VCCIO4 4 R13 VCCIO4 4 T12 ...

Page 115

... Lattice Semiconductor Thermal Management Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits ...

Page 116

... The markings appear as follows: © 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 117

... LFXP3C-3T100C 62 LFXP3C-4T100C 62 LFXP3C-5T100C 62 Part Number I/Os LFXP6C-3F256C 188 LFXP6C-4F256C 188 LFXP6C-5F256C 188 LFXP6C-3Q208C 142 LFXP6C-4Q208C 142 LFXP6C-5Q208C 142 LFXP6C-3T144C 100 LFXP6C-4T144C 100 LFXP6C-5T144C 100 Part Number I/Os LFXP10C-3F388C 244 LFXP10C-4F388C 244 LFXP10C-5F388C 244 LFXP10C-3F256C 188 LFXP10C-4F256C 188 LFXP10C-5F256C 188 Commercial ...

Page 118

... Lattice Semiconductor Part Number I/Os LFXP15C-3F484C 300 LFXP15C-4F484C 300 LFXP15C-5F484C 300 LFXP15C-3F388C 268 LFXP15C-4F388C 268 LFXP15C-5F388C 268 LFXP15C-3F256C 188 LFXP15C-4F256C 188 LFXP15C-5F256C 188 Part Number I/Os LFXP20C-3F484C 340 LFXP20C-4F484C 340 LFXP20C-5F484C 340 LFXP20C-3F388C 268 LFXP20C-4F388C 268 LFXP20C-5F388C 268 LFXP20C-3F256C 188 LFXP20C-4F256C ...

Page 119

... Lattice Semiconductor Part Number I/Os LFXP6E-3F256C 188 LFXP6E-4F256C 188 LFXP6E-5F256C 188 LFXP6E-3Q208C 142 LFXP6E-4Q208C 142 LFXP6E-5Q208C 142 LFXP6E-3T144C 100 LFXP6E-4T144C 100 LFXP6E-5T144C 100 Part Number I/Os LFXP10E-3F388C 244 LFXP10E-4F388C 244 LFXP10E-5F388C 244 LFXP10E-3F256C 188 LFXP10E-4F256C 188 LFXP10E-5F256C 188 Part Number I/Os ...

Page 120

... LFXP3C-4Q208I 136 LFXP3C-3T144I 100 LFXP3C-4T144I 100 LFXP3C-3T100I 62 LFXP3C-4T100I 62 Part Number I/Os LFXP6C-3F256I 188 LFXP6C-4F256I 188 LFXP6C-3Q208I 142 LFXP6C-4Q208I 142 LFXP6C-3T144I 100 LFXP6C-4T144I 100 Part Number I/Os LFXP10C-3F388I 244 LFXP10C-4F388I 244 LFXP10C-3F256I 188 LFXP10C-4F256I 188 Commercial (Cont.) Voltage Grade Package 1.2V -3 fpBGA 1 ...

Page 121

... Lattice Semiconductor Part Number I/Os LFXP15C-3F484I 300 LFXP15C-4F484I 300 LFXP15C-3F388I 268 LFXP15C-4F388I 268 LFXP15C-3F256I 188 LFXP15C-4F256I 188 Part Number I/Os LFXP20C-3F484I 340 LFXP20C-4F484I 340 LFXP20C-3F388I 268 LFXP20C-4F388I 268 LFXP20C-3F256I 188 LFXP20C-4F256I 188 Part Number I/Os LFXP3E-3Q208I 136 LFXP3E-4Q208I 136 LFXP3E-3T144I 100 ...

Page 122

... Lattice Semiconductor Part Number I/Os LFXP15E-3F484I 300 LFXP15E-4F484I 300 LFXP15E-3F388I 268 LFXP15E-4F388I 268 LFXP15E-3F256I 188 LFXP15E-4F256I 188 Part Number I/Os LFXP20E-3F484I 340 LFXP20E-4F484I 340 LFXP20E-3F388I 268 LFXP20E-4F388I 268 LFXP20E-3F256I 188 LFXP20E-4F256I 188 Industrial (Cont.) Voltage Grade Package 1.2V -3 fpBGA 1.2V -4 fpBGA 1 ...

Page 123

... LFXP3C-5TN144C 100 LFXP3C-3TN100C 62 LFXP3C-4TN100C 62 LFXP3C-5TN100C 62 Part Number I/Os LFXP6C-3FN256C 188 LFXP6C-4FN256C 188 LFXP6C-5FN256C 188 LFXP6C-3QN208C 142 LFXP6C-4QN208C 142 LFXP6C-5QN208C 142 LFXP6C-3TN144C 100 LFXP6C-4TN144C 100 LFXP6C-5TN144C 100 Part Number I/Os LFXP10C-3FN388C 244 LFXP10C-4FN388C 244 LFXP10C-5FN388C 244 LFXP10C-3FN256C 188 LFXP10C-4FN256C 188 LFXP10C-5FN256C ...

Page 124

... Lattice Semiconductor Part Number I/Os LFXP20C-3FN484C 340 LFXP20C-4FN484C 340 LFXP20C-5FN484C 340 LFXP20C-3FN388C 268 LFXP20C-4FN388C 268 LFXP20C-5FN388C 268 LFXP20C-3FN256C 188 LFXP20C-4FN256C 188 LFXP20C-5FN256C 188 Part Number I/Os LFXP3E-3QN208C 136 LFXP3E-4QN208C 136 LFXP3E-5QN208C 136 LFXP3E-3TN144C 100 LFXP3E-4TN144C 100 LFXP3E-5TN144C 100 LFXP3E-3TN100C 62 LFXP3E-4TN100C 62 LFXP3E-5TN100C ...

Page 125

... I/Os LFXP3C-3QN208I 136 LFXP3C-4QN208I 136 LFXP3C-3TN144I 100 LFXP3C-4TN144I 100 LFXP3C-3TN100I 62 LFXP3C-4TN100I 62 Part Number I/Os LFXP6C-3FN256I 188 LFXP6C-4FN256I 188 LFXP6C-3QN208I 142 LFXP6C-4QN208I 142 LFXP6C-3TN144I 100 LFXP6C-4TN144I 100 Commercial (Cont.) Voltage Grade Package 1.2V -3 fpBGA 1.2V -4 fpBGA 1.2V -5 fpBGA 1.2V -3 fpBGA 1.2V -4 fpBGA 1 ...

Page 126

... Lattice Semiconductor Part Number I/Os LFXP10C-3FN388I 244 LFXP10C-4FN388I 244 LFXP10C-3FN256I 188 LFXP10C-4FN256I 188 Part Number I/Os LFXP15C-3FN484I 300 LFXP15C-4FN484I 300 LFXP15C-3FN388I 268 LFXP15C-4FN388I 268 LFXP15C-3FN256I 188 LFXP15C-4FN256I 188 Part Number I/Os LFXP20C-3FN484I 340 LFXP20C-4FN484I 340 LFXP20C-3FN388I 268 LFXP20C-4FN388I 268 LFXP20C-3FN256I 188 ...

Page 127

... Lattice Semiconductor Part Number I/Os LFXP10E-3FN388I 244 LFXP10E-4FN388I 244 LFXP10E-3FN256I 188 LFXP10E-4FN256I 188 Part Number I/Os LFXP15E-3FN484I 300 LFXP15E-4FN484I 300 LFXP15E-3FN388I 268 LFXP15E-4FN388I 268 LFXP15E-3FN256I 188 LFXP15E-4FN256I 188 Part Number I/Os LFXP20E-3FN484I 340 LFXP20E-4FN484I 340 LFXP20E-3FN388I 268 LFXP20E-4FN388I 268 LFXP20E-3FN256I 188 ...

Page 128

... PCI: www.pcisig.com © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 129

... DC and Switching Characteristics © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. ...

Page 130

... Lattice Semiconductor Date Version September 2005 03.0 DC and Switching (cont.) (cont.) Characteristics (cont.) Pinout Information Supplemental Information September 2005 03.1 Pinout Information December 2005 04.0 Introduction Architecture DC and Switching Characteristics Pinout Information Ordering Information February 2006 04.1 Pinout Information March 2006 04 ...

Related keywords