EVAL-ADUC842QSZ Analog Devices Inc, EVAL-ADUC842QSZ Datasheet - Page 32

no-image

EVAL-ADUC842QSZ

Manufacturer Part Number
EVAL-ADUC842QSZ
Description
Analog MCU Evaluation Board
Manufacturer
Analog Devices Inc
Series
QuickStart™ Kitr
Type
MCUr

Specifications of EVAL-ADUC842QSZ

Silicon Manufacturer
Analog Devices
Core Architecture
8052
Silicon Core Number
ADuC842
Tool / Board Applications
General Purpose MCU, MPU, DSP, DSC
Mcu Supported Families
ADUC8xx
Contents
Evaluation Board, Power Supply, Cable, Software and Documentation
Development Tool Type
Hardware - Eval/Demo Board
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With/related Products
ADuC824
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
ADuC841/ADuC842/ADuC843
A 4 kByte Flash/EE data memory space is also provided on-
chip. This may be used as a general-purpose nonvolatile
scratchpad area. User access to this area is via a group of six
SFRs. This space can be programmed at a byte level, although it
must first be erased in 4-byte pages.
Flash/EE Memory Reliability
The Flash/EE program and data memory arrays on the parts are
fully qualified for two key Flash/EE memory characteristics:
Flash/EE memory cycling endurance and Flash/EE memory
data retention.
Endurance quantifies the ability of the Flash/EE memory to be
cycled through many program, read, and erase cycles. In real
terms, a single endurance cycle is composed of four independ-
ent, sequential events, defined as
1.
2.
3.
4.
In reliability qualification, every byte in both the program and
data Flash/EE memory is cycled from 00H to FFH until a first
fail is recorded, signifying the endurance limit of the on-chip
Flash/EE memory.
As indicated in the Specifications table, the parts’ Flash/EE
memory endurance qualification has been carried out in
accordance with JEDEC Retention Lifetime Specification A117
over the industrial temperature range of –40°C to +25°C and
+25°C to +85°C. The results allow the specification of a mini-
mum endurance figure over supply and over temperature of
100,000 cycles, with an endurance figure of 700,000 cycles being
typical of operation at 25°C.
Retention quantifies the ability of the Flash/EE memory to
retain its programmed data over time. Again, the parts have
been qualified in accordance with the formal JEDEC Retention
Lifetime Specification (A117) at a specific junction temperature
(T
memory is cycled to its specified endurance limit, described
previously, before data retention is characterized. This means
that the Flash/EE memory is guaranteed to retain its data for its
fully specified retention lifetime every time the Flash/EE
memory is reprogrammed. Also note that retention lifetime,
based on an activation energy of 0.6 eV, derates with T
shown in Figure 38.
J
= 55°C). As part of this qualification procedure, the Flash/EE
Initial page erase sequence.
Read/verify sequence a single Flash/EE.
Byte program sequence memory.
Second read/verify sequence endurance cycle.
J
as
Rev. 0 | Page 32 of 88
Using the Flash/EE Program Memory
The 62 kByte Flash/EE program memory array is mapped into
the lower 62 kBytes of the 64 kByte program space addressable
by the parts, and is used to hold user code in typical applica-
tions. The program Flash/EE memory array can be
programmed in three ways:
Serial Downloading (In-Circuit Programming)
The parts facilitate code download via the standard UART serial
port. The parts enter serial download mode after a reset or
power cycle if the PSEN pin is pulled low through an external
1 kΩ resistor. Once in serial download mode, the user can
download code to the full 62 kBytes of Flash/EE program
memory while the device is in-circuit in its target application
hardware.
A PC serial download executable is provided as part of the
ADuC841/ADuC842 QuickStart development system. The
serial download protocol is detailed in MicroConverter
Application Note uC004.
Parallel Programming
Parallel programming mode is fully compatible with conven-
tional third party flash or EEPROM device programmers. In
this mode, Ports P0, P1, and P2 operate as the external data and
address bus interface, ALE operates as the write enable strobe,
and Port P3 is used as a general configuration port, which
configures the device for various program and erase operations
during parallel programming. The high voltage (12 V) supply
required for flash programming is generated using on-chip
charge pumps to supply the high voltage program lines. The
complete parallel programming specification is available on the
MicroConverter home page at www.analog.com/microconverter.
300
250
200
150
100
50
0
40
Figure 38. Flash/EE Memory Data Retention
50
T
J
60
JUNCTION TEMPERATURE (°C)
ADI SPECIFICATION
100 YEARS MIN.
AT T
70
J
= 55°C
80
90
100
110

Related parts for EVAL-ADUC842QSZ