IRLD110PBF Vishay, IRLD110PBF Datasheet

MOSFET N-CH 100V 1A 4-DIP

IRLD110PBF

Manufacturer Part Number
IRLD110PBF
Description
MOSFET N-CH 100V 1A 4-DIP
Manufacturer
Vishay
Type
Power MOSFETr
Datasheets

Specifications of IRLD110PBF

Transistor Polarity
N-Channel
Fet Type
MOSFET N-Channel, Metal Oxide
Fet Feature
Logic Level Gate
Rds On (max) @ Id, Vgs
540 mOhm @ 600mA, 5V
Drain To Source Voltage (vdss)
100V
Current - Continuous Drain (id) @ 25° C
1A
Vgs(th) (max) @ Id
2V @ 250µA
Gate Charge (qg) @ Vgs
6.1nC @ 5V
Input Capacitance (ciss) @ Vds
250pF @ 25V
Power - Max
1.3W
Mounting Type
Through Hole
Package / Case
4-DIP (0.300", 7.62mm)
Minimum Operating Temperature
- 55 C
Configuration
Single Dual Drain
Resistance Drain-source Rds (on)
0.54 Ohm @ 5 V
Drain-source Breakdown Voltage
100 V
Gate-source Breakdown Voltage
+/- 10 V
Continuous Drain Current
1 A
Power Dissipation
1300 mW
Maximum Operating Temperature
+ 175 C
Mounting Style
Through Hole
Continuous Drain Current Id
1A
Drain Source Voltage Vds
100V
On Resistance Rds(on)
540mohm
Rds(on) Test Voltage Vgs
5V
Threshold Voltage Vgs Typ
2V
Number Of Elements
1
Polarity
N
Channel Mode
Enhancement
Drain-source On-res
0.54Ohm
Drain-source On-volt
100V
Gate-source Voltage (max)
±10V
Operating Temp Range
-55C to 175C
Operating Temperature Classification
Military
Mounting
Through Hole
Pin Count
4
Package Type
HexDIP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
*IRLD110PBF

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRLD110PBF
Manufacturer:
IR
Quantity:
15 000
Part Number:
IRLD110PBF
Manufacturer:
Cypress
Quantity:
120
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. V
c. I
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91309
S10-2465-Rev. C, 08-Nov-10
PRODUCT SUMMARY
V
R
Q
Q
Q
Configuration
ORDERING INFORMATION
Package
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS (T
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
Pulsed Drain Current
Linear Derating Factor
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Maximum Power Dissipation
Peak Diode Recovery dV/dt
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
DS
DS(on)
g
gs
gd
SD
DD
(Max.) (nC)
(nC)
(nC)
(V)
 5.6 A, dI/dt  75 A/µs, V
= 25 V, starting T
()
D
HVMDIP
a
a
S
J
G
= 25 °C, L = 183 mH, R
c
a
DD
b
V
GS
 V
= 5.0 V
DS
G
, T
N-Channel MOSFET
J
Single
 175 °C.
100
6.1
2.6
3.3
g
= 25 , I
D
S
Power MOSFET
A
V
0.54
= 25 °C, unless otherwise noted)
GS
at 5.0 V
AS
= 2.0 A (see fig. 12).
T
for 10 s
A
= 25 °C
T
T
A
A
HVMDIP
IRLD110PbF
SiHLD110-E3
IRLD110
SiHLD110
= 100 °C
= 25 °C
FEATURES
• Dynamic dV/dt Rating
• Repetitive Avalanche Rated
• For Automatic Insertion
• End Stackable
• Logic-Level Gate Drive
• R
• 175 °C Operating Temperature
• Compliant to RoHS Directive 2002/95/EC
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized
cost-effectiveness.
The 4 pin DIP package is a low cost machine-insertable case
style which can be stacked in multiple combinations on
standard 0.1" pin centers. The dual drain serves as a thermal
link to the mounting surface for power dissipation levels up to
1 W.
DS(on)
Specified at V
SYMBOL
T
dV/dt
J
V
V
E
E
I
I
P
, T
device
I
DM
AR
DS
GS
AS
AR
D
D
stg
IRLD110, SiHLD110
design,
GS
= 4 V and 5 V
- 55 to + 175
0.0083
LIMIT
300
± 10
0.70
0.13
100
490
1.0
8.0
1.0
1.3
5.5
low
Vishay Siliconix
d
on-resistance
www.vishay.com
UNIT
W/°C
RoHS*
COMPLIANT
V/ns
mJ
mJ
°C
W
V
A
A
Available
and
1

Related parts for IRLD110PBF

IRLD110PBF Summary of contents

Page 1

... The 4 pin DIP package is a low cost machine-insertable case S style which can be stacked in multiple combinations on N-Channel MOSFET standard 0.1" pin centers. The dual drain serves as a thermal link to the mounting surface for power dissipation levels HVMDIP IRLD110PbF SiHLD110-E3 IRLD110 SiHLD110 = 25 °C, unless otherwise noted °C ...

Page 2

... IRLD110, SiHLD110 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER Maximum Junction-to-Ambient SPECIFICATIONS ( °C, unless otherwise noted) J PARAMETER Static Drain-Source Breakdown Voltage V Temperature Coefficient DS Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamic Input Capacitance Output Capacitance ...

Page 3

... TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) 20 µs PULSE WIDTH T A Fig Typical Output Characteristics µs PULSE WIDTH T A Fig Typical Output Characteristics, T Document Number: 91309 S10-2465-Rev. C, 08-Nov- ° ° 175 °C = 175 °C Fig Normalized On-Resistance vs. Temperature A IRLD110, SiHLD110 Vishay Siliconix Fig Typical Transfer Characteristics www.vishay.com 3 ...

Page 4

... IRLD110, SiHLD110 Vishay Siliconix Fig Typical Capacitance vs. Drain-to-Source Voltage Fig Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 Fig Typical Source-Drain Diode Forward Voltage ° 175 °C J SINGLE PULSE Fig Maximum Safe Operating Area Document Number: 91309 S10-2465-Rev. C, 08-Nov-10 ...

Page 5

... Fig Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Document Number: 91309 S10-2465-Rev. C, 08-Nov- Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit Fig. 10b - Switching Time Waveforms Rectangular Pulse Duration (s) , Rectangular Pulse Duration ( IRLD110, SiHLD110 Vishay Siliconix D.U. d(on) r d(off) f www.vishay.com 5 ...

Page 6

... IRLD110, SiHLD110 Vishay Siliconix Vary t to obtain p required I AS D.U 0. Fig. 12a - Unclamped Inductive Test Circuit Fig. 12c - Maximum Avalanche Energy vs. Drain Current Charge Fig. 13a - Basic Gate Charge Waveform www.vishay.com Fig. 12b - Unclamped Inductive Waveforms Current regulator Same type as D.U.T. ...

Page 7

... Note Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91309. Document Number: 91309 S10-2465-Rev ...

Page 8

... Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part ...

Related keywords