CY8C3866AXI-040 Cypress Semiconductor Corp, CY8C3866AXI-040 Datasheet - Page 46

PSOC 3 TQFP

CY8C3866AXI-040

Manufacturer Part Number
CY8C3866AXI-040
Description
PSOC 3 TQFP
Manufacturer
Cypress Semiconductor Corp
Series
PSOC™ 3 CY8C38xxr
Datasheet

Specifications of CY8C3866AXI-040

Package / Case
*
Voltage - Supply (vcc/vdd)
1.71 V ~ 5.5 V
Operating Temperature
-40°C ~ 85°C
Speed
67MHz
Number Of I /o
62
Eeprom Size
2K x 8
Core Processor
8051
Program Memory Type
FLASH
Ram Size
8K x 8
Program Memory Size
64KB (64K x 8)
Data Converters
A/D 2x20b, D/A 4x8b
Oscillator Type
Internal
Peripherals
CapSense, DMA, LCD, POR, PWM, WDT
Connectivity
CAN, EBI/EMI, I²C, LIN, SPI, UART/USART, USB
Core Size
8-Bit
Processor Series
CY8C38
Core
8051
Data Bus Width
32 bit
Data Ram Size
8 KB
Interface Type
I2C, SPI, UART, USB
Maximum Clock Frequency
67 MHz
Number Of Programmable I/os
28 to 72
Number Of Timers
4
Operating Supply Voltage
0.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Controller Family/series
(8051) PSOC 3
No. Of I/o's
62
Eeprom Memory Size
2KB
Ram Memory Size
8KB
Cpu Speed
67MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY8C3866AXI-040
Manufacturer:
Cypress Semiconductor
Quantity:
135
Part Number:
CY8C3866AXI-040
Manufacturer:
NXP
Quantity:
112
Part Number:
CY8C3866AXI-040
Manufacturer:
Cypress Semiconductor Corp
Quantity:
10 000
Part Number:
CY8C3866AXI-040
Manufacturer:
CYPRESS/赛普拉斯
Quantity:
20 000
Company:
Part Number:
CY8C3866AXI-040
Quantity:
10
Part Number:
CY8C3866AXI-040ES2
Manufacturer:
CYPRESS
Quantity:
153
7.2.3.2 Clock Generation
Each subcomponent block of a UDB including the two PLDs, the
datapath, and Status and Control, has a clock selection and
control block. This promotes a fine granularity with respect to
allocating clocking resources to UDB component blocks and
allows unused UDB resources to be used by other functions for
maximum system efficiency.
7.3 UDB Array Description
Figure 7-11
the array core, there are a DSI routing interfaces at the top and
bottom of the array. Other interfaces that are not explicitly shown
include the system interfaces for bus and clock distribution. The
UDB array includes multiple horizontal and vertical routing
channels each comprised of 96 wires. The wire connections to
UDBs, at horizontal/vertical intersection and at the DSI interface
are highly permutable providing efficient automatic routing in
PSoC Creator. Additionally the routing allows wire by wire
segmentation along the vertical and horizontal routing to further
increase routing flexibility and capability.
Figure 7-11. Digital System Interface Structure
7.3.1 UDB Array Programmable Resources
Figure 7-12
a bank of 16 UDBs. The primary programmable resources of the
UDB are two PLDs, one datapath and one status/control register.
These resources are allocated independently, because they
have independently selectable clocks, and therefore unused
blocks are allocated to other unrelated functions.
Document Number: 001-11729 Rev. *R
UDB
UDB
UDB
UDB
shows an example of a 16 UDB array. In addition to
shows an example of how functions are mapped into
HV
HV
HV
HV
B
A
B
A
UDB
UDB
UDB
UDB
System Connections
System Connections
HV
HV
HV
HV
A
B
A
B
UDB
UDB
UDB
UDB
HV
HV
HV
HV
B
A
B
A
UDB
UDB
UDB
UDB
HV
HV
HV
HV
A
B
A
B
An example of this is the 8-bit timer in the upper left corner of the
array. This function only requires one datapath in the UDB, and
therefore the PLD resources may be allocated to another
function. A function such as a Quadrature Decoder may require
more PLD logic than one UDB can supply and in this case can
utilize the unused PLD blocks in the 8-bit Timer UDB.
Programmable resources in the UDB array are generally
homogeneous so functions can be mapped to arbitrary
boundaries in the array.
Figure 7-12. Function Mapping Example in a Bank of UDBs
7.4 DSI Routing Interface Description
The DSI routing interface is a continuation of the horizontal and
vertical routing channels at the top and bottom of the UDB array
core. It provides general purpose programmable routing
between device peripherals, including UDBs, I/Os, analog
peripherals, interrupts, DMA and fixed function peripherals.
Figure 7-13
interconnect, which connects the UDB array routing matrix with
other device peripherals. Any digital core or fixed function
peripheral that needs programmable routing is connected to this
interface.
Signals in this category include:
8-Bit
Timer
I2C Slave
UART
Interrupt requests from all digital peripherals in the system.
DMA requests from all digital peripherals in the system.
Digital peripheral data signals that need flexible routing to I/Os.
Digital peripheral data signals that need connections to UDBs.
Connections to the interrupt and DMA controllers.
Connection to I/O pins.
Connection to analog system digital signals.
UDB
UDB
UDB
UDB
Quadrature Decoder
illustrates the concept of the digital system
HV
HV
A
B
8-Bit SPI
UDB
PSoC
UDB
UDB
UDB
HV
HV
B
A
®
Logic
12-Bit PWM
12-Bit SPI
3: CY8C38 Family
UDB
UDB
UDB
UDB
16-Bit
PWM
HV
HV
Data Sheet
A
B
16-Bit PYRS
Page 46 of 129
8-Bit
Timer
UDB
UDB
UDB
UDB
Logic
HV
HV
B
A
[+] Feedback

Related parts for CY8C3866AXI-040