PIC16F726-E/SO Microchip Technology, PIC16F726-E/SO Datasheet - Page 184

no-image

PIC16F726-E/SO

Manufacturer Part Number
PIC16F726-E/SO
Description
14KB Flash Program, 1.8V-5.5V, 16MHz Internal Oscillator, 8b ADC, CCP, I2C/SPI,
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr

Specifications of PIC16F726-E/SO

Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
25
Program Memory Size
14KB (8K x 14)
Program Memory Type
FLASH
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 11x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
28-SOIC (7.5mm Width)
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
368 B
Interface Type
I2C, SCI, SPI
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
25
Number Of Timers
3
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120
Minimum Operating Temperature
- 40 C
On-chip Adc
8 bit, 11 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164112 - VOLTAGE LIMITER MPLAB ICD2 VPPICE2000 - EMULATOR MPLAB-ICE 2000 POD
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
PIC16F72X/PIC16LF72X
17.2.7
During any SCL low phase, any device on the I
may hold the SCL line low and delay, or pause, the
transmission of data. This “stretching” of a transmission
allows devices to slow down communication on the
bus. The SCL line must be constantly sampled by the
master to ensure that all devices on the bus have
released SCL for more data.
Stretching usually occurs after an ACK bit of a
transmission, delaying the first bit of the next byte. The
SSP module hardware automatically stretches for two
conditions:
• After a 10-bit address byte is received (update
• Anytime the CKP bit of the SSPCON register is
The module will hold SCL low until the CKP bit is set.
This allows the user slave software to update SSPBUF
with data that may not be readily available. In 10-bit
addressing modes, the SSPADD register must be
updated after receiving the first and second address
bytes. The SSP module will hold the SCL line low until
the SSPADD has a byte written to it. The UA bit of the
SSPSTAT register will be set, along with SSPIF,
indicating an address update is needed.
17.2.8
Master mode of operation is supported in firmware
using interrupt generation on the detection of the Start
and Stop conditions. The Stop (P) and Start (S) bits of
the SSPSTAT register are cleared from a Reset or
when the SSP module is disabled (SSPEN cleared).
The Stop (P) and Start (S) bits will toggle based on the
Start and Stop conditions. Control of the I
be taken when the P bit is set or the bus is Idle and both
the S and P bits are clear.
In Firmware Master mode, the SCL and SDA lines are
manipulated by setting/clearing the corresponding TRIS
bit(s). The output level is always low, irrespective of the
value(s) in the corresponding PORT register bit(s).
When transmitting a ‘1’, the TRIS bit must be set (input)
and a ‘0’, the TRIS bit must be clear (output).
The following events will cause the SSP Interrupt Flag
bit, SSPIF, to be set (SSP Interrupt will occur if
enabled):
• Start condition
• Stop condition
• Data transfer byte transmitted/received
Firmware Master Mode of operation can be done with
either the Slave mode Idle (SSPM<3:0> = 1011), or
with either of the Slave modes in which interrupts are
enabled. When both master and slave functionality is
enabled, the software needs to differentiate the
source(s) of the interrupt.
DS41341E-page 184
SSPADD register)
cleared by hardware
CLOCK STRETCHING
FIRMWARE MASTER MODE
2
C bus may
2
C bus
Refer
Implementation of I
information.
17.2.9
In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allow the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the SSP
module is disabled. The Stop (P) and Start (S) bits will
toggle based on the Start and Stop conditions. Control
of the I
SSPSTAT register is set or when the bus is Idle, and
both the S and P bits are clear. When the bus is busy,
enabling the SSP Interrupt will generate the interrupt
when the Stop condition occurs.
In Multi-Master operation, the SDA line must be moni-
tored to see if the signal level is the expected output
level. This check only needs to be done when a high
level is output. If a high level is expected and a low level
is present, the device needs to release the SDA and
SCL lines (set TRIS bits). There are two stages where
this arbitration of the bus can be lost. They are the
Address Transfer and Data Transfer stages.
When the slave logic is enabled, the slave continues to
receive. If arbitration was lost during the address
transfer stage, communication to the device may be in
progress. If addressed, an ACK pulse will be
generated. If arbitration was lost during the data
transfer stage, the device will need to re-transfer the
data at a later time.
Refer to Application Note AN578, “Use of the SSP
Module in the I
(DS00578) for more information.
2
to
C bus may be taken when the P bit of the
MULTI-MASTER MODE
Application
2
C™ Bus Master” (DS00554) for more
2
C™ Multi-Master Environment”
© 2009 Microchip Technology Inc.
Note
AN554,
“Software

Related parts for PIC16F726-E/SO