AD5327BRUZ Analog Devices Inc, AD5327BRUZ Datasheet - Page 13

no-image

AD5327BRUZ

Manufacturer Part Number
AD5327BRUZ
Description
IC DAC 12BIT QUAD 2.5V 16-TSSOP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD5327BRUZ

Data Interface
Serial
Settling Time
8µs
Number Of Bits
12
Number Of Converters
4
Voltage Supply Source
Single Supply
Power Dissipation (max)
4.5mW
Operating Temperature
-40°C ~ 105°C
Mounting Type
Surface Mount
Package / Case
16-TSSOP
Resolution (bits)
12bit
Sampling Rate
125kSPS
Input Channel Type
Serial
Supply Voltage Range - Analog
2.5V To 5.5V
Supply Current
500µA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD5327BRUZ
Manufacturer:
MOT
Quantity:
56
Part Number:
AD5327BRUZ
Quantity:
2 595
Part Number:
AD5327BRUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
TERMINOLOGY
Relative Accuracy
For the DAC, relative accuracy, or integral nonlinearity (INL), is
a measure of the maximum deviation in LSB from a straight line
passing through the endpoints of the DAC transfer function.
Figure 6 through Figure 8 show plots of typical INL vs. code.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ±1 LSB
maximum ensures monotonicity. This DAC is guaranteed
monotonic by design. Figure 9 through Figure 11 show plots of
typical DNL vs. code.
Offset Error
Offset error is a measure of the deviation in the output voltage
from 0 V when zero-code is loaded to the DAC (see Figure 29
and Figure 30.) It can be negative or positive. It is expressed in
millivolts.
Gain Error
Gain error is a measure of the span error of the DAC. It is the
deviation in slope of the actual DAC transfer characteristic from
the ideal expressed as a percentage of the full-scale range.
Offset Error Drift
Offset error drift is a measure of the change in offset error
with changes in temperature. It is expressed in (ppm of full-
scale range)/°C.
Gain Error Drift
Gain error drift is a measure of the change in gain error
with changes in temperature. It is expressed in (ppm of full-
scale range)/°C.
DC Power Supply Rejection Ratio (PSRR)
PSRR indicates how the output of the DAC is affected by
changes in the supply voltage. It is the ratio of the change in
V
measured in decibels. V
DC Crosstalk
DC crosstalk is the dc change in the output level of one DAC in
response to a change in the output of another DAC. It is measured
with a full-scale output change on one DAC while monitoring
another DAC. It is expressed in microvolts.
Reference Feedthrough
Reference feedthrough is the ratio of the amplitude of the signal at
the DAC output to the reference input when the DAC output is not
being updated (that is, LDAC is high). It is expressed in decibels.
Channel-to-Channel Isolation
Channel-to-channel isolation is the ratio of the amplitude of the
signal at the output of one DAC to a sine wave on the reference
input of another DAC. It is measured in decibels.
OUT
to a change in V
DD
REF
for full-scale output of the DAC. It is
is held at 2 V, and V
DD
is varied ±10%.
Rev. C | Page 13 of 28
Major-Code Transition Glitch Energy
Major-code transition glitch energy is the energy of the impulse
injected into the analog output when the code in the DAC
register changes state. It is normally specified as the area of the
glitch in nV-s and is measured when the digital code is changed
by 1 LSB at the major carry transition (011 . . . 11 to 100 . . . 00
or 100 . . . 00 to 011 . . . 11).
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of a DAC from the digital input pins of the
device, but it is measured when the DAC is not being written to
( SYNC held high). It is specified in nV-s and is measured with a
full-scale change on the digital input pins, that is, from all 0s to
all 1s or vice versa.
Digital Crosstalk
Digital crosstalk is the glitch impulse transferred to the output
of one DAC at midscale in response to a full-scale code change
(all 0s to all 1s or vice versa) in the input register of another DAC.
It is measured in standalone mode and is expressed in nV-s.
Analog Crosstalk
Analog crosstalk is the glitch impulse transferred to the output
of one DAC due to a change in the output of another DAC. It is
measured by loading one of the input registers with a full-scale
code change (all 0s to all 1s or vice versa) while keeping LDAC
high, and then pulsing LDAC low and monitoring the output of
the DAC whose digital code has not changed. The area of the
glitch is expressed in nV-s.
DAC-to-DAC Crosstalk
DAC-to-DAC crosstalk is the glitch impulse transferred to the
output of one DAC due to a digital code change and subsequent
output change of another DAC. This includes both digital and
analog crosstalk. It is measured by loading one of the DACs
with a full-scale code change (all 0s to all 1s or vice versa) with
LDAC low while monitoring the output of another DAC. The
energy of the glitch is expressed in nV-s.
Multiplying Bandwidth
The amplifiers within the DAC have a finite bandwidth, and the
multiplying bandwidth is a measure of this. A sine wave on the
reference (with full-scale code loaded to the DAC) appears on
the output. The multiplying bandwidth is the frequency at
which the output amplitude falls to 3 dB below the input.
Total Harmonic Distortion (THD)
THD is the difference between an ideal sine wave and its attenuated
version using the DAC. The sine wave is used as the reference for
the DAC, and the THD is a measure of the harmonics present
on the DAC output. It is measured in decibels.
AD5307/AD5317/AD5327

Related parts for AD5327BRUZ