ATmega8515 Atmel Corporation, ATmega8515 Datasheet - Page 170

no-image

ATmega8515

Manufacturer Part Number
ATmega8515
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega8515

Flash (kbytes)
8 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
35
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Input Capture Channels
1
Pwm Channels
3
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8515
Manufacturer:
ATMEL
Quantity:
5 510
Part Number:
ATMEGA8515
Manufacturer:
NS
Quantity:
5 510
Part Number:
ATMEGA8515
Manufacturer:
AT
Quantity:
20 000
Part Number:
ATmega8515-16AC
Manufacturer:
MOT
Quantity:
3 450
Part Number:
ATmega8515-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AC
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATmega8515-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8515-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8515-16JU
Quantity:
1 831
Part Number:
ATmega8515-16PU
Manufacturer:
AT
Quantity:
20 000
Store Program memory
Control Register – SPMCR
170
ATmega8515(L)
The Store Program memory Control Register contains the control bits needed to control
the Boot Loader operations.
• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready interrupt will be executed as long
as the SPMEN bit in the SPMCR Register is cleared.
• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.
• Bit 5 – Res: Reserved Bit
This bit is a reserved bit in the ATmega8515 and always read as zero.
• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (page erase or page write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a Page Erase or a Page Write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.
• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits, according to the data in R0. The data in R1 and
the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared
upon completion of the Lock bit set, or if no SPM instruction is executed within four clock
cycles.
An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-
pointer) into the destination register. See “Reading the Fuse and Lock bits from Soft-
ware” on page 174 for details.
• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z-pointer. The data in R1 and R0 are
ignored. The PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM
instruction is executed within four clock cycles. The CPU is halted during the entire page
write operation if the NRWW section is addressed.
• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of
Bit
Read/Write
Initial Value
SPMIE
R/W
7
0
RWWSB
R
6
0
R
5
0
RWWSRE
R/W
4
0
BLBSET
R/W
3
0
PGWRT
R/W
2
0
PGERS
R/W
1
0
SPMEN
R/W
0
0
2512K–AVR–01/10
SPMCR

Related parts for ATmega8515