SAM3S1A Atmel Corporation, SAM3S1A Datasheet - Page 435

no-image

SAM3S1A

Manufacturer Part Number
SAM3S1A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM3S1A

Flash (kbytes)
64 Kbytes
Pin Count
48
Max. Operating Frequency
64 MHz
Cpu
Cortex-M3
# Of Touch Channels
17
Hardware Qtouch Acquisition
No
Max I/o Pins
34
Ext Interrupts
34
Usb Transceiver
1
Quadrature Decoder Channels
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Twi (i2c)
2
Uart
3
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
1000
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
YES
Dram Memory
No
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes
26.12 Clock Failure Detector
6500C–ATARM–8-Feb-11
The clock failure detector allows to monitor the 3 to 20 MHz Crystal or Ceramic Resonator-
based oscillator and to detect an eventual defect of this oscillator (for example if the crystal is
unconnected).
The clock failure detector can be enabled or disabled by means of the CFDEN bit in the PMC
Clock Generator Main Oscillator Register (CKGR_MOR). After reset, the detector is disabled.
However, if the 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator is disabled, the
clock failure detector is disabled too.
A failure is detected by means of a counter incrementing on the 3 to 20 MHzCrystal oscillator or
Ceramic Resonator-based oscillator clock edge and timing logic clocked on the slow clock RC
oscillator controlling the counter. The counter is cleared when the slow clock RC oscillator signal
is low and enabled when the slow clock RC oscillator is high. Thus the failure detection time is 1
slow clock RC oscillator clock period. If, during the high level period of slow clock RC oscillator,
less than 8 fast crystal clock periods have been counted, then a failure is declared.
If a failure of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is detected,
the CFDEV flag is set in the PMC Status Register (PMC_SR), and can generate an interrupt if it
is not masked. The interrupt remains active until a read operation in the PMC_SR register. The
user can know the status of the clock failure detector at any time by reading the CFDS bit in the
PMC_SR register.
If the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator clock is selected as the source
clock of MAINCK (MOSCSEL = 1), and if the Master Clock Source is PLLACK or PLLBCK (CSS
= 2 or 3), then a clock failure detection switches automatically the Master Clock on MAINCK.
Then whatever the PMC configuration is, a clock failure detection switches automatically
MAINCK on the 4/8/12 MHz Fast RC Oscillator clock. If the Fast RC oscillator is disabled when a
clock failure detection occurs, it is automatically re-enabled by the clock failure detection
mechanism.
It takes 2 slow clock RC oscillator cycles to detect and switch from the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to the 4/8/12 MHz Fast RC Oscillator if the Master Clock
source is Main Clock, or 3 slow clock RC oscillator cycles if the Master Clock source is PLLACK
or PLLBACK.
A clock failure detection activates a fault output that is connected to the Pulse Width Modulator
(PWM) Controller. With this connection, the PWM controller is able to force its outputs and to
protect the driven device, if a clock failure is detected. This fault output remains active until the
defect is detected and until it is not cleared by the bit FOCLR in the PMC Fault Output Clear
Register (PMC_FOCR).
The user can know the status of the fault output at any time by reading the bit
PMC_SR register.
SAM3S
FOS
in the
435

Related parts for SAM3S1A