tc500a Microchip Technology Inc., tc500a Datasheet

no-image

tc500a

Manufacturer Part Number
tc500a
Description
Precision Analog Front Ends
Manufacturer
Microchip Technology Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
tc500aC0E
Manufacturer:
MICR0CHIP
Quantity:
20 000
Part Number:
tc500aCOE
Quantity:
15
Part Number:
tc500aCOE
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
tc500aCPE
Quantity:
13
Part Number:
tc500aCPE
Manufacturer:
JRC
Quantity:
6 225
Part Number:
tc500aCPE
Manufacturer:
MIC
Quantity:
20 000
Part Number:
tc500aIJE
Quantity:
22
Part Number:
tc500aIJE
Manufacturer:
ZILOG
Quantity:
30
Part Number:
tc500aIJE
Manufacturer:
TI
Quantity:
550
Features:
• Precision (up to 17 bits) A/D Converter “Front
• 3-Pin Control Interface to Microprocessor
• Flexible: User Can Trade-off Conversion Speed
• Single-Supply Operation (TC510/TC514)
• 4 Input, Differential Analog MUX (TC514)
• Automatic Input Voltage Polarity Detection
• Low Power Dissipation:
• Wide Analog Input Range:
• Directly Accepts Bipolar and Differential
Applications:
• Precision Analog Signal Processor
• Precision Sensor Interface
• High Accuracy DC Measurements
© 2006 Microchip Technology Inc.
End”
for Resolution
- (TC500/TC500A): 10 mW
- (TC510/TC514): 18 mW
- ±4.2V (TC500A/TC510)
Input Signals
Precision Analog Front Ends
TC500/A/510/514
General Description:
TheTC500/A/510/514 family are precision analog front
ends that implement dual slope A/D converters having
a maximum resolution of 17 bits plus sign. As a
minimum, each device contains the integrator, zero
crossing comparator and processor interface logic. The
TC500 is the base (16-bit max) device and requires
both positive and negative power supplies. The
TC500A is identical to the TC500 with the exception
that it has improved linearity, allowing it to operate to a
maximum resolution of 17 bits. The TC510 adds an on-
board negative power supply converter for single-
supply operation. The TC514 adds both a negative
power supply converter and a 4-input differential
analog multiplexer.
Each device has the same processor control interface
consisting of 3 wires: control inputs (A and B) and zero-
crossing comparator output (CMPTR). The processor
manipulates A, B to sequence the TC5XX through four
phases of conversion: auto-zero, integrate, de-inte-
grate and integrator zero. During the auto-zero phase,
offset voltages in the TC5XX are corrected by a closed
loop feedback mechanism. The input voltage is applied
to the integrator during the integrate phase. This
causes an integrator output dv/dt directly proportional
to the magnitude of the input voltage. The higher the
input voltage, the greater the magnitude of the voltage
stored on the integrator during this phase. At the start
of the de-integrate phase, an external voltage
reference is applied to the integrator and, at the same
time, the external host processor starts its on-board
timer. The processor maintains this state until a
transition occurs on the CMPTR output, at which time
the processor halts its timer. The resulting timer count
is the converted analog data. Integrator zero (the final
phase of conversion) removes any residue remaining
in the integrator in preparation for the next conversion.
The TC500/A/510/514 offer high resolution (up to 17
bits), superior 50/60 Hz noise rejection, low-power
operation, minimum I/O connections, low input bias
currents and lower cost compared to other converter
technologies having similar conversion speeds.
DS21428D-page 1

Related parts for tc500a

tc500a Summary of contents

Page 1

... The TC500 is the base (16-bit max) device and requires both positive and negative power supplies. The TC500A is identical to the TC500 with the exception that it has improved linearity, allowing it to operate to a maximum resolution of 17 bits. The TC510 adds an on- board negative power supply converter for single- supply operation ...

Page 2

... Converter Sate 0 0 Zero Integrator Output 0 1 Auto-Zero 1 0 Signal Integrate 1 1 De-integrate INT TC500 TC500A TC510 CMPTR 1 TC514 CMPTR 2 + Level CMPTR Shift Output + Polarity Detection Phase DGND Decoding Logic (TC500 Control Logic TC500A) © 2006 Microchip Technology Inc. ...

Page 3

... TC510/TC514 Positive Supply Voltage (V to GND) ......................................... +10.5V DD TC500/TC500A Supply Voltage ( .............................................. +18V DD SS TC500/TC500A Positive Supply Voltage (V to GND) ............................................ +12V DD TC500/TC500A Negative Supply Voltage (V to GND)................................................-8V SS Analog Input Voltage ( ............ Logic Input Voltage...............V +0.3V to GND - 0.3V DD Voltage on OSC: ........................... -0. +0.3V) for V ...

Page 4

... Negative Supply V -4.5 SS Operating Range Note 1: Integrate time 66 msec, auto-zero time 2: End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment. 3: Rollover error is related to C INT DS21428D-page 4 = +5V, TC500/TC500A +25° 0°C to 70° Typ. Max. Min. Typ. — V – ...

Page 5

... Load Current (mA) FIGURE 2-2: Output Ripple vs. Load Current. 100 100 Oscillator Capacitance (pF) FIGURE 2-3: Oscillator Frequency vs. Capacitance. © 2006 Microchip Technology Inc. TC500/A/510/514 - +25 ° FIGURE 2-4: Current. 100 ...

Page 6

... A0 — — DS21428D-page 6 Function Integrator output. Integrator capacitor connection. Negative power supply input (TC500/TC500A only). Auto-zero input. The auto-zero capacitor connection. Buffer output. The Integrator capacitor connection. input common pin ( within the analog Common Mode Range (CMR Input ...

Page 7

... Integrating converters provide inherent noise rejection with at least a 20dB/decade attenuation rate. Interference signals with frequencies at integral © 2006 Microchip Technology Inc. TC500/A/510/514 multiples of the integration period are, theoretically, completely removed, since the average value of a sine wave of frequency (1/T) averaged over a period (T) is zero ...

Page 8

... INT DEINT FIGURE 4-3: Basic Dual Slope Converter. DS21428D-page 8 C INT Integrator R INT – V INT – Phase Switch Driver Control Polarity Control V SUPPLY V INT ROM REF RAM TC510 Comparator CMPTR Out Control Logic A B I/O Microcomputer Timer Counter © 2006 Microchip Technology Inc. ...

Page 9

... Common mode range V input signal polarity is normally checked via software at the end of this phase: CMPTR = 1 for positive polarity; CMPTR = 0 for negative polarity. © 2006 Microchip Technology Inc. TC500/A/510/514 The internal analog switch status for each of these phases is summarized in Table 5-1. This table references the Typical Application ...

Page 10

... Time Input Capture Integration De-integration Phase Time Sample Input Polarity T INT Comparator Delay + Processor Latency Output Zero Integrator Ready for Next Output Conversion Zero Phase (Auto-Zero is Complete Idle State) Minimizing Overshoot will Minimize I.O.Z. Time © 2006 Microchip Technology Inc. ...

Page 11

... Integrate Integrator Output Comparator Output A. Positive Input Signal FIGURE 6-1: Comparator Output. © 2006 Microchip Technology Inc. TC500/A/510/514 The difference in reference for (+) or (-) input voltages will cause a rollover error. This error can be minimized by using a large reference capacitor in comparison –) IN the stray capacitance. ...

Page 12

... IV + 0.9VI – INT -------------------------------------------- - C = INT V – 0 whichever is less (TC500/ INT RECOMMENDED CAPACITOR FOR C INT Suggested Part Number* SMR5 104K50J01L4 SMR5 224K50J02L4 SMR5 334K50J03L4 SMR5 474K50J04L4 REF V – 0 INT INT ---------------------------------------------------------- - INT © 2006 Microchip Technology Inc. ...

Page 13

... Input Integrate time should be more than adequate to null out system errors. The system may remain in this phase indefinitely (i.e., auto-zero is the appropriate Idle state for a TC5XX device). © 2006 Microchip Technology Inc. TC500/A/510/514 8.4 Input Signal Integrate Phase The length of this phase is constant from one conversion to the next and depends on system parameters and component value selections ...

Page 14

... A0). These are high-true control Integrator signals (i.e., channel 0 is selected when (A1 00). Zero Phase High V REF for negative bias within the TC510 pin OUT is switched across the power supply and +. This charge is transferred to capacitor © 2006 Microchip Technology Inc. ...

Page 15

... From which REF (see Table 7-1) Note: Microchip recommended capacitor: Evox Rifa p/n: 5MR5 224K50J02L4 Step 5. Calculate V : REF EQUATION 9-1: V – 0 INT ---------------------------------------------------------- - V = REF 2 T INT – 4.1 0. ------------------------------------------------------------- - 2 0.66 = 1.025 © 2006 Microchip Technology Inc. TC500/A/510/514 ) as a multiple - 0. 0.22 F INT 5 DS21428D-page 15 ...

Page 16

... INPUT 2+ 12 CH2- INPUT 2- 16 CH3+ INPUT 3+ 11 CH3- INPUT 3- CH4+ 15 INPUT4+ 10 CH4- INPUT4- Typical Waveforms +5V Pin ® PICmicro Pin 19 Microcontroller Pin Pin 19 +5V ® PICmicro Microcontroller Typical Waveforms PIN PIN 23 PIN PIN 23 © 2006 Microchip Technology Inc. ...

Page 17

... PC Printer Port PORT 0378 Hex 10 19 CMPTR FIGURE 9-3: TC510 To IBM © 2006 Microchip Technology Inc. TC500/A/510/514 OUT CAP CAP REF 0. REF REF TC510 0. REF 100 k 4 BUF 0. ...

Page 18

... DS21428D-page OUT CAP– CAP REF 0. REF REF 0.01 F TC514 REF 100 k 4 BUF 0. INT 5 ACOM DGND 27 ® Compatible Printer Port MCP1525 0.33 F © 2006 Microchip Technology Inc. ...

Page 19

... Standard marking consists of Microchip part number, year code, week code, traceability code. For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. © 2006 Microchip Technology Inc. TC500/A/510/514 Example: TC500AIJE 0441256 Example: TC500CPE 0441256 Example: TC500ACOE 0441256 DS21428D-page 19 ...

Page 20

... YYWWNNN 24-Lead SOIC (300 mil) XXXXXXXXXXXXX XXXXXXXXXXXXX YYWWNNN 28-Lead PDIP (300 mil) XXXXXXXXXXXXXX XXXXXXXXXXXXXX YYWWNNN 28-Lead SOIC (300 mil) XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX YYWWNNN DS21428D-page 20 Example: TC510CPF 0441256 Example: TC510COG 0441256 Example: TC514CPJ 0441256 Example: TC514COI 0441256 © 2006 Microchip Technology Inc. ...

Page 21

... Shoulder to Shoulder Width Ceramic Pkg. Width Overall Length Tip to Seating Plane Lead Thickness Upper Lead Width Lower Lead Width Overall Row Spacing *Controlling Parameter JEDEC Equivalent: MS-030 Drawing No. C04-003 © 2006 Microchip Technology Inc. TC500/A/510/514 Units ...

Page 22

... E1 .240 .250 .260 D .740 .750 .760 L .125 .130 .135 c .008 .012 .015 B1 .045 .058 .070 B .014 .018 .022 eB .310 .370 .430 MILLIMETERS MIN NOM MAX 16 2.54 3.56 3.94 4.32 2.92 3.30 3.68 0.38 7.62 7.94 8.26 6.10 6.35 6.60 18.80 19.05 19.30 3.18 3.30 3.43 0.20 0.29 0.38 1.14 1.46 1.78 .036 0.46 0.56 7.87 9.40 10. Revised 07-21-05 © 2006 Microchip Technology Inc. ...

Page 23

... Mold Draft Angle Bottom * Controlling Parameter § Significant Characteristic Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-102 © 2006 Microchip Technology Inc. TC500/A/510/514 ...

Page 24

... E1 .240 .250 .260 D 1.245 1.250 1.255 L .120 .125 .130 c .008 .012 .015 B1 .045 .053 .060 B .014 .018 .022 eB .310 .370 .430 MILLIMETERS MIN NOM MAX 24 2.54 3.56 3.81 4.06 2.92 3.30 3.68 0.38 7.49 7.87 8.26 6.10 6.35 6.60 31.62 31.75 31.88 3.05 3.18 3.30 0.20 0.29 0.38 1.14 1.33 1.52 0.36 0.46 0.56 7.87 9.40 10. Revised 09-14-05 © 2006 Microchip Technology Inc. ...

Page 25

... Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. BSC: Basic Dimension. Theoretically exact value shown without tolerances. See ASME Y14.5M JEDEC Equivalent: MS-013 AD Drawing No. C04-025 © 2006 Microchip Technology Inc. TC500/A/510/514 ...

Page 26

... E .300 .310 .325 E1 .275 .285 .295 D 1.345 1.365 1.385 L .125 .130 .135 c .008 .012 .015 B1 .040 .053 .065 B .016 .019 .022 eB .320 .350 .430 MILLIMETERS MIN NOM MAX 28 2.54 3.56 3.81 4.06 3.18 3.30 3.43 0.38 7.62 7.87 8.26 6.99 7.24 7.49 34.16 34.67 35.18 3.18 3.30 3.43 0.20 0.29 0.38 1.02 1.33 1.65 0.41 0.48 0.56 8.13 8.89 10. © 2006 Microchip Technology Inc. ...

Page 27

... Mold Draft Angle Bottom * Controlling Parameter § Significant Characteristic Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052 © 2006 Microchip Technology Inc. TC500/A/510/514 ...

Page 28

... Suffix Device Carrier Width (W) Pitch (P) Part Per Full Reel 1000 User Direction of Feed W P Standard Reel Component Orientation for 713 Suffix Device Pitch (P) Part Per Full Reel Reel Size 12 mm 1000 Reel Size 13 in © 2006 Microchip Technology Inc. ...

Page 29

... Product Tape and Reel Specifications (Continued) Component Taping Orientation for 28-Pin SOIC (Wide) Devices Pin 1 Carrier Tape, Number of Components Per Reel and Reel Size Package 28-Pin SOIC (W) © 2006 Microchip Technology Inc. TC500/A/510/514 User Direction of Feed P Standard Reel Component Orientation for 713 Suffix Device ...

Page 30

... TC500/A/510/514 NOTES: DS21428D-page 30 © 2006 Microchip Technology Inc. ...

Page 31

... To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office PART NO. X /XX Device Temperature Package Range Device TC500 16 Bit Analog Processor TC500A 16 Bit Analog Processor TC510 Precision Analog Front End TC514 Precision Analog Front End Temperature Range C = 0°C to +70°C (Commercial -25° ...

Page 32

... TC500/A/510/514 NOTES: DS21428D-page 32 © 2006 Microchip Technology Inc. ...

Page 33

... Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. © 2006 Microchip Technology Inc. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC ...

Page 34

... Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 © 2006 Microchip Technology Inc. EUROPE Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris ...

Related keywords