H5PS1G63EFR HYNIX [Hynix Semiconductor], H5PS1G63EFR Datasheet - Page 40

no-image

H5PS1G63EFR

Manufacturer Part Number
H5PS1G63EFR
Description
1Gb DDR2 SDRAM
Manufacturer
HYNIX [Hynix Semiconductor]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
H5PS1G63EFR
Manufacturer:
HYNIX
Quantity:
9 500
Part Number:
H5PS1G63EFR
Manufacturer:
HYNIX/海力士
Quantity:
20 000
Part Number:
H5PS1G63EFR-20L
Manufacturer:
HYNIX
Quantity:
5 520
Part Number:
H5PS1G63EFR-20L
Manufacturer:
NITROX
Quantity:
28
Part Number:
H5PS1G63EFR-20L
Manufacturer:
HYNIX/海力士
Quantity:
20 000
Company:
Part Number:
H5PS1G63EFR-20L
Quantity:
1 300
Part Number:
H5PS1G63EFR-25C
Manufacturer:
Hynix
Quantity:
450
Part Number:
H5PS1G63EFR-G7C
Manufacturer:
HYNIX
Quantity:
9 500
Part Number:
H5PS1G63EFR-G7C
Manufacturer:
SKHYNIX
Quantity:
20 000
Company:
Part Number:
H5PS1G63EFR-G7C
Quantity:
19
Part Number:
H5PS1G63EFR-G7C-C
Manufacturer:
HYNIX/海力士
Quantity:
20 000
Part Number:
H5PS1G63EFR-S5C
Manufacturer:
HYNIX/海力士
Quantity:
20 000
Company:
Part Number:
H5PS1G63EFR-S5C
Quantity:
3 200
Rev. 0.4 / Nov 2008
36. These parameters are specified per their average values, however it is understood that the following
relationship between the average timing and the absolute instantaneous timing holds at all times. (Min and
max of SPEC values are to be used for calculations in the table below.)
Example: For DDR2-667, tCH (abs), min = (0.48 x 3000 ps) - 125 ps = 1315 ps
37. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but
not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing
tQH.
The value to be used for tQH calculation is determined by the following equation;
tHP = Min (tCH (abs), tCL (abs)),
where,
tCH (abs) is the minimum of the actual instantaneous clock HIGH time;
tCL (abs) is the minimum of the actual instantaneous clock LOW time;
38. tQHS accounts for:
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the
input is transferred to the output; and
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and
p-channel to n-channel variation of the output drivers
39. tQH = tHP ? tQHS, where:
tHP is the minimum of the absolute half period of the actual input clock; and
tQHS is the specification value under the max column.
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye
will be.}
Examples:
1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps min-
imum.
2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps
minimum.
40. When the device is operated with input clock jitter, this parameter needs to be derated by the actual
tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per),min = - 272 ps and
tERR(6-10per), max = + 293 ps, then tDQSCK, min (derated) = tDQSCK, min - tERR(6-10per),max = -
400 ps - 293 ps = - 693 ps and tDQSCK, max (derated) = tDQSCK, max - tERR(6-10per),min = 400 ps +
Absolute clock HIGH pulse width
Absolute clock LOW pulse width
Absolute clock period
Parameter
Symbol
tCK (abs)
tCH (abs)
tCL (abs)
tCH (avg), min * tCK (avg), min +
tCL (avg), min * tCK (avg), min +
tCK (avg), min + tJIT (per), min
tJIT (per), min
tJIT (per), min
min
tCH (avg), max * tCK (avg), max
tCK (avg), max + tJIT (per), max
tCL (avg), max * tCK (avg), max
+ tJIT (per), max
+ tJIT (per), max
max
H5PS1G43EFR
H5PS1G83EFR
H5PS1G63EFR
Units
ps
ps
ps
40

Related parts for H5PS1G63EFR