C8051F020DK Silicon Laboratories Inc, C8051F020DK Datasheet - Page 138

DEV KIT FOR F020/F021/F022/F023

C8051F020DK

Manufacturer Part Number
C8051F020DK
Description
DEV KIT FOR F020/F021/F022/F023
Manufacturer
Silicon Laboratories Inc
Type
MCUr
Datasheet

Specifications of C8051F020DK

Contents
Evaluation Board, Power Supply, USB Cables, Adapter and Documentation
Processor To Be Evaluated
C8051F02x
Interface Type
USB
Silicon Manufacturer
Silicon Labs
Core Architecture
8051
Silicon Core Number
C8051F020
Silicon Family Name
C8051F02x
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
For Use With/related Products
Silicon Laboratories C8051 F020/021/022/023
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1200

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
C8051F020DK
Manufacturer:
SiliconL
Quantity:
10
C8051F020/1/2/3
14.1. External Crystal Example
If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be as shown
in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crys-
tal column of the table in Figure 14.3 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN
setting of 111b.
The Crystal Oscillator Valid Flag (XTLVLD in register OSCXCN) is set to logic 1 by hardware when the external
crystal oscillator is running and stable. The XTLVLD detection circuit requires a startup time of at least 1 ms between
enabling the oscillator and checking the XTLVLD bit. Switching to the external oscillator before the crystal oscillator
has stabilized can result in unpredictable behavior. The recommended procedure is:
Important Note: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as
possible to the XTAL pins on the device, as should the loading capacitors on the crystal pins. The traces should be as
short as possible and shielded with ground plane from any other traces which could introduce noise or interference.
14.2. External RC Example
If an RC network is used as an external oscillator source for the MCU, the circuit should be as shown in Figure 14.1,
Option 2. The capacitor must be no greater than 100 pF; however for small capacitors (less than ~20 pF), the total
capacitance may be dominated by PWB parasitic capacitance. To determine the required External Oscillator Fre-
quency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired fre-
quency of oscillation. If the frequency desired is 100 kHz, let R = 246 k and C = 50 pF:
f = 1.23( 10
XFCN  log
XFCN  log
XFCN  2, or code 010b
14.3. External Capacitor Example
If a capacitor is used as an external oscillator for the MCU, the circuit should be as shown in Figure 14.1, Option 3.
The capacitor must be no greater than 100 pF; however for small capacitors (less than ~20 pF), the total capacitance
may be dominated by PWB parasitic capacitance. To determine the required External Oscillator Frequency Control
value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the
equations below. Assume VDD = 3.0 V and C = 50 pF:
f = KF / ( C * VDD ) = KF / ( 50 * 3 )
f = KF / 150
If a frequency of roughly 90 kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:
f = 13 / 150 = 0.087 MHz, or 87 kHz
Therefore, the XFCN value to use in this example is 011b.
138
Step 1. Enable the external oscillator.
Step 2. Wait at least 1 ms.
Step 3. Poll for XTLVLD => ‘1’.
Step 4. Switch the system clock to the external oscillator.
3
2
2
) / RC = 1.23 ( 10
( f / 25 kHz )
( 100 kHz / 25 kHz ) = log
3
) / [ 246 * 50 ] = 0.1 MHz = 100 kHz
2
( 4 )
Rev. 1.4

Related parts for C8051F020DK