MC68030RC33

Manufacturer Part NumberMC68030RC33
DescriptionMC68030RC33ENHANCED 32-BIT MICROPROCESSOR
ManufacturerMotorola
MC68030RC33 datasheet
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
Page 341
342
Page 342
343
Page 343
344
Page 344
345
Page 345
346
Page 346
347
Page 347
348
Page 348
349
Page 349
350
Page 350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
Page 350/602:

System Description

Download datasheet (4Mb)Embed
PrevNext
Memory Management Unit
An aging counter can be set up in an unused field of a page descriptor. The system can
periodically check the U (used) bit for the page and increment the count when the page has
not been used since the previous check. The system can identify the least recently used
page from the counts in the aging counter. When the counter for a page overflows, the
system can list the page in a queue of least recently used pages from which it chooses the
next page to be reallocated.
Many schemes afford the operating system designer a variety in selecting a page to be
taken. One operating system scans page tables, starting at the lowest priority task, looking
for aged pages to steal. Another system maintains a system-wide list of all page frames as
they are used and scans the list, starting at the oldest, to find a page to steal. A sophisticated
system keeps a working set model of active pages for each individual task. From this
information, it can swap a complete block of pages in and out with a single I/O operation.
The method chosen can have a dramatic impact on limiting page fault overhead in a heavily
used system.
9.10 AN EXAMPLE OF PAGING IMPLEMENTATION IN AN
OPERATING SYSTEM
This section describes an example operating system design that illustrates some of the
MMU features. The description suggests alternatives to provide variations of the design.
Memory management algorithms that can be implemented to derive the actual code are
shown. A bus error handler routine is shown also. Implementing the algorithms develops the
basic code for the memory management services of an operating system.
9.10.1 System Description
The example system has the ability to map a large virtual memory task space, which is
required for execution of predominantly numerically intensive processing tasks. Most of
these tasks do not need more than 16 Mbytes of memory, but the system can supply a larger
virtual memory space (as large as 496 Mbytes) to the occasional task that requires more.
The system uses the relatively large page size of 8K bytes to minimize thrashing and
translation table searches. With a larger page size, fewer descriptors can map a large area
of virtual memory. Also, in a given period of time, the MC68030 experiences fewer ATC
misses and performs fewer table searches. The larger page size requires the paging I/O
operations to transfer larger blocks of data, and sometimes only a small part of the page is
actually used. However, preliminary software model simulations show that 8K-byte pages
provide optimum performance for this type of processing.
9-62
MC68030 USER’S MANUAL
MOTOROLA