PIC16F688

Manufacturer Part NumberPIC16F688
ManufacturerMicrochip Technology Inc.
PIC16F688 datasheet
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Page 21
22
Page 22
23
Page 23
24
Page 24
25
Page 25
26
Page 26
27
Page 27
28
Page 28
29
Page 29
30
Page 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
Page 27/202:

Internal Clock Modes

Download datasheet (4Mb)Embed
PrevNext
3.4.4
EXTERNAL RC MODES
The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required. There are two modes: RC and RCIO.
In RC mode, the RC circuit connects to OSC1. OSC2/
CLKOUT outputs the RC oscillator frequency divided
by 4. This signal may be used to provide a clock for
external circuitry, synchronization, calibration, test or
other application requirements. Figure 3-5 shows the
external RC mode connections.
FIGURE 3-5:
EXTERNAL RC MODES
V
DD
®
PIC
MCU
R
EXT
OSC1/CLKIN
C
EXT
V
SS
(1)
F
/4 or
OSC
OSC2/CLKOUT
(2)
I/O
Recommended values: 10 kΩ ≤ R
≤ 100 kΩ, <3V
EXT
3 kΩ ≤ R
≤ 100 kΩ, 3-5V
EXT
C
> 20 pF, 2-5V
EXT
Note 1:
Alternate pin functions are listed in
Section 1.0 “Device Overview”.
2:
Output depends upon RC or RCIO clock mode.
In RCIO mode, the RC circuit is connected to OSC1.
OSC2 becomes an additional general purpose I/O pin.
The RC oscillator frequency is a function of the supply
voltage, the resistor (R
) and capacitor (C
EXT
and the operating temperature. Other factors affecting
the oscillator frequency are:
• threshold voltage variation
• component tolerances
• packaging variations in capacitance
The user also needs to take into account variation due
to tolerance of external RC components used.
© 2007 Microchip Technology Inc.
3.5

Internal Clock Modes

The Oscillator module has two independent, internal
oscillators that can be configured or selected as the
system clock source.
1.
The
HFINTOSC
Oscillator) is factory calibrated and operates at
8 MHz. The frequency of the HFINTOSC can be
user-adjusted via software using the OSCTUNE
register (Register 3-2).
2.
The
LFINTOSC
Oscillator) is uncalibrated and operates at 31 kHz.
The system clock speed can be selected via software
using the Internal Oscillator Frequency Select bits
IRCF<2:0> of the OSCCON register.
The system clock can be selected between external or
internal clock sources via the System Clock Selection
(SCS) bit of the OSCCON register. See Section 3.6
“Clock Switching” for more information.
Internal
Clock
3.5.1
INTOSC AND INTOSCIO MODES
The INTOSC and INTOSCIO modes configure the
internal oscillators as the system clock source when
the device is programmed using the oscillator selection
or the FOSC<2:0> bits in the Configuration Word
register
(CONFIG).
Features of the CPU” for more information.
In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT outputs the selected
internal oscillator frequency divided by 4. The CLKOUT
signal may be used to provide a clock for external
circuitry, synchronization, calibration, test or other
application requirements.
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT
are available for general purpose I/O.
3.5.2
HFINTOSC
) values
EXT
The High-Frequency Internal Oscillator (HFINTOSC) is
a factory calibrated 8 MHz internal clock source. The
frequency of the HFINTOSC can be altered via
software using the OSCTUNE register (Register 3-2).
The output of the HFINTOSC connects to a postscaler
and multiplexer (see Figure 3-1). One of seven
frequencies can be selected via software using the
IRCF<2:0> bits of the OSCCON register. See
Section 3.5.4 “Frequency Select Bits (IRCF)” for
more information.
The HFINTOSC is enabled by selecting any frequency
between 8 MHz and 125 kHz by setting the IRCF<2:0>
bits of the OSCCON register ≠ 000. Then, set the
System Clock Source (SCS) bit of the OSCCON
register to ‘1’ or enable Two-Speed Start-up by setting
the IESO bit in the Configuration Word register
(CONFIG) to ‘1’.
The HF Internal Oscillator (HTS) bit of the OSCCON
register indicates whether the HFINTOSC is stable or not.
PIC16F688
(High-Frequency
Internal
(Low-Frequency
Internal
See
Section 11.0
“Special
DS41203D-page 25