PIC16F872-I/SO Microchip Technology, PIC16F872-I/SO Datasheet - Page 477

IC MCU FLASH 2KX14 EE 28SOIC

PIC16F872-I/SO

Manufacturer Part Number
PIC16F872-I/SO
Description
IC MCU FLASH 2KX14 EE 28SOIC
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F872-I/SO

Program Memory Type
FLASH
Program Memory Size
3.5KB (2K x 14)
Package / Case
28-SOIC (7.5mm Width)
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Eeprom Size
64 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 5x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
128 B
Interface Type
I2C/SPI/SSP
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
22
Number Of Timers
3
Operating Supply Voltage
4 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM163022
Minimum Operating Temperature
- 40 C
On-chip Adc
5-ch x 10-bit
Package
28SOIC W
Device Core
PIC
Family Name
PIC16
Maximum Speed
20 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28SO-1 - SOCKET TRANSITION 28SOIC 300MIL309-1073 - ADAPTER 28-SOIC TO 28-SOIC309-1024 - ADAPTER 28-SOIC TO 28-DIP309-1023 - ADAPTER 28-SOIC TO 28-DIP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F872-I/SO
Manufacturer:
MICROCHI
Quantity:
470
Part Number:
PIC16F872-I/SO
Manufacturer:
TI
Quantity:
5
Part Number:
PIC16F872-I/SO
Manufacturer:
MIC
Quantity:
20 000
Company:
Part Number:
PIC16F872-I/SO
Quantity:
5 000
1997 Microchip Technology Inc.
Note:
COM0 - SEGx [ON] =
COM0 - SEGx [OFF] =
V
V
D = V
Refer to Figure 25-6
RMS
RMS
V
[ON] =
[OFF] =
RMS
RMS
[ON]
[OFF]
The next example is for Figure 25-6 which is a 1/4 MUX, 1/3 BIAS waveform. For this example,
the values 3, 2, 1 and 0 will be assigned to V
DC voltage, RMS voltage and discrimination ratio calculations are shown in
Example 25-4:
As shown in these examples, static displays have excellent contrast. The higher the multiplex
ratio of the LCD, the lower the discrimination ratio, and therefore, the lower the contrast of the
display.
Table 25-5
and BIAS.
As the multiplex of the LCD panel increases, the discrimination ratio decreases. The contrast of
the panel will also decrease, so to provide better contrast the LCD voltages must be increased
to provide greater separation between each level.
Table 25-5: Discrimination Ratio vs. MUX and Bias
1/2 MUX
1/3 MUX
1/4 MUX
STATIC
V
V
= 3
shows the V
1
3 - 3 + 1 - 1 + 1 - 1 + 1 - 1
1 - 1 - 1 + 1 - 1 + 1 - 1 + 1
(1)
(3)
2
2
V
V
Discrimination Ratio Calculation 1/4 MUX
+ (-1)
+ (-3)
0.333
0.333
0.333
V
= 1.732
OFF
0
OFF
2
2
+ (-1)
+ (1)
, V
ON
2
1/3 BIAS
2
+ (-1)
and discrimination ratios of the various combinations of MUX
0.745
0.638
0.577
+ (1)
V
1
ON
2
2
8
8
+ (-1)
+ (1)
3
2
2.236
1.915
1.732
, V
2
+ (-1)
D
+ (1)
2
, V
V
V
DC
DC
1
Section 25. LCD
2
2
, and V
+ (-1)
= 0
= 0
+ (1)
2
2
0
+ (-1)
+ (1)
respectively. The frame equation,
2
2
=
DS31025A-page 25-19
=
Example
3
V
V
25-4.
25

Related parts for PIC16F872-I/SO