PIC18LF4685-I/P Microchip Technology, PIC18LF4685-I/P Datasheet - Page 194

IC PIC MCU FLASH 48KX16 40DIP

PIC18LF4685-I/P

Manufacturer Part Number
PIC18LF4685-I/P
Description
IC PIC MCU FLASH 48KX16 40DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18LF4685-I/P

Core Size
8-Bit
Program Memory Size
96KB (48K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
36
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.25K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC18
No. Of I/o's
36
Eeprom Memory Size
1024Byte
Ram Memory Size
3.25KB
Cpu Speed
40MHz
No. Of Timers
4
Package
40PDIP
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
44
Interface Type
CAN/I2C/SPI/USART
On-chip Adc
11-chx10-bit
Number Of Timers
4
Core
PIC
Processor Series
PIC18LF
Maximum Clock Frequency
40 MHz
Data Ram Size
3.25 KB
Mounting Style
Through Hole
A/d Bit Size
10 bit
A/d Channels Available
11
Height
4.95 mm
Length
53.21 mm
Maximum Operating Temperature
+ 85 C
Minimum Operating Temperature
- 40 C
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2 V
Width
14.73 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18LF4685-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18LF4685-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
PIC18F2682/2685/4682/4685
17.3.5
The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2, Figure 17-2) is to
broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be
disabled (programmed as an input). The SSPSR regis-
ter will continue to shift in the signal present on the SDI
pin at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and status bits
appropriately set). This could be useful in receiver
applications as a “Line Activity Monitor” mode.
FIGURE 17-3:
DS39761C-page 194
Write to
SSPBUF
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
SCK
(CKP = 0
CKE = 1)
SCK
(CKP = 1
CKE = 1)
SDO
(CKE = 0)
SDO
(CKE = 1)
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SDI
(SMP = 1)
Input
Sample
(SMP = 1)
SSPIF
SSPSR to
SSPBUF
MASTER MODE
SPI MODE WAVEFORM (MASTER MODE)
bit 7
bit 7
bit 7
bit 7
bit 6
bit 6
bit 5
bit 5
bit 4
bit 4
bit 3
bit 3
The clock polarity is selected by appropriately
programming the CKP bit (SSPCON1<4>). This then,
would give waveforms for SPI communication as
shown in Figure 17-3, Figure 17-5 and Figure 17-6,
where the MSB is transmitted first. In Master mode, the
SPI clock rate (bit rate) is user-programmable to be one
of the following:
• F
• F
• F
• Timer2 output/2
This allows a maximum data rate (at 40 MHz) of
10.00 Mbps.
Figure 17-3 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.
OSC
OSC
OSC
/4 (or T
/16 (or 4 • T
/64 (or 16 • T
bit 2
bit 2
CY
)
bit 1
bit 1
CY
CY
)
)
© 2009 Microchip Technology Inc.
bit 0
bit 0
bit 0
bit 0
Next Q4 Cycle
after Q2↓
4 Clock
Modes

Related parts for PIC18LF4685-I/P