DSPIC33FJ12MC202-I/ML Microchip Technology, DSPIC33FJ12MC202-I/ML Datasheet - Page 27

IC DSPIC MCU/DSP 12K 28QFN

DSPIC33FJ12MC202-I/ML

Manufacturer Part Number
DSPIC33FJ12MC202-I/ML
Description
IC DSPIC MCU/DSP 12K 28QFN
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ12MC202-I/ML

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
12KB (12K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 6x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Core Frequency
40MHz
Core Supply Voltage
2.75V
Embedded Interface Type
I2C, JTAG, SPI, UART
No. Of I/o's
21
Flash Memory Size
12KB
Supply Voltage Range
3V To 3.6V
Package
28QFN EP
Device Core
dsPIC
Family Name
dSPIC33
Maximum Speed
40 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
6-chx10-bit|6-chx12-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164336 - MODULE SOCKET FOR PM3 28/44QFNDM240001 - BOARD DEMO PIC24/DSPIC33/PIC32
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
The SA and SB bits are modified each time data
passes through the adder/subtracter, but can only be
cleared by the user application. When set, they indicate
that the accumulator has overflowed its maximum
range (bit 31 for 32-bit saturation or bit 39 for 40-bit
saturation) and will be saturated (if saturation is
enabled). When saturation is not enabled, SA and SB
default to bit 39 overflow, and therefore, indicate that a
catastrophic overflow has occurred. If the COVTE bit in
the INTCON1 register is set, the SA and SB bits will
generate an arithmetic warning trap when saturation is
disabled.
The Overflow and Saturation Status bits can optionally
be viewed in the STATUS Register (SR) as the logical
OR of OA and OB (in bit OAB) and the logical OR of SA
and SB (in bit SAB). Programmers can check one bit in
the STATUS register to determine whether either
accumulator has overflowed, or one bit to determine
whether either accumulator has saturated. This is
useful for complex number arithmetic, which typically
uses both accumulators.
The device supports three Saturation and Overflow
modes:
• Bit 39 Overflow and Saturation:
• Bit 31 Overflow and Saturation:
• Bit 39 Catastrophic Overflow:
© 2009 Microchip Technology Inc.
When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive 9.31
value (0x7FFFFFFFFF) or maximally negative 9.31
value (0x8000000000) into the target accumulator.
The SA or SB bit is set and remains set until
cleared by the user application. This condition is
referred to as ‘super saturation’ and provides pro-
tection against erroneous data or unexpected algo-
rithm problems (such as gain calculations).
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally positive
1.31 value (0x007FFFFFFF) or maximally nega-
tive 1.31 value (0x0080000000) into the target
accumulator. The SA or SB bit is set and remains
set until cleared by the user application. When
this Saturation mode is in effect, the guard bits are
not used, so the OA, OB or OAB bits are never
set.
The bit 39 Overflow Status bit from the adder is
used to set the SA or SB bit, which remains set
until cleared by the user application. No saturation
operation is performed, and the accumulator is
allowed to overflow, destroying its sign. If the
COVTE bit in the INTCON1 register is set, a
catastrophic overflow can initiate a trap exception.
Preliminary
dsPIC33FJ12MC201/202
3.6.3
The MAC class of instructions (with the exception of
MPY, MPY.N, ED, and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator which is not targeted by the instruc-
tion into data space memory. The write is performed
across the X bus into combined X and Y address
space. The following addressing modes are supported:
• W13, Register Direct:
• [W13] + = 2, Register Indirect with Post-Increment:
The rounded contents of the non-target
accumulator are written into W13 as a
1.15 fraction.
The rounded contents of the non-target accumu-
lator are written into the address pointed to by
W13 as a 1.15 fraction. W13 is then incremented
by 2 (for a word write).
ACCUMULATOR ‘WRITE BACK’
DS70265D-page 25

Related parts for DSPIC33FJ12MC202-I/ML