DSPIC30F6014AT-20E/PF Microchip Technology, DSPIC30F6014AT-20E/PF Datasheet - Page 157

no-image

DSPIC30F6014AT-20E/PF

Manufacturer Part Number
DSPIC30F6014AT-20E/PF
Description
16-bit MCU/DSP 30MIPS 144KB 80 TQFP 14x14x1mm T/R
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6014AT-20E/PF

Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, LVD, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
144KB (48K x 24)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
80-TQFP, 80-VQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300024 - KIT DEMO DSPICDEM 1.1DM300019 - BOARD DEMO DSPICDEM 80L STARTERDM300004-2 - BOARD DEMO DSPICDEM.NET 2DM300004-1 - BOARD DEMO DSPICDEM.NET 1AC164314 - MODULE SKT FOR PM3 80PFAC30F001 - MODULE SOCKET DSPIC30F 80TQFPXLT80PT2 - SOCKET TRANSITION ICE 80TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6014AT-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
20.5
20.5.1
The primary function of the Watchdog Timer (WDT) is
to reset the processor in the event of a software
malfunction. The WDT is a free running timer, which
runs off an on-chip RC oscillator, requiring no external
component. Therefore, the WDT timer will continue to
operate even if the main processor clock (e.g., the
crystal oscillator) fails.
20.5.2
The Watchdog Timer can be “Enabled” or “Disabled”
only through a Configuration bit (FWDTEN) in the
Configuration register FWDT.
Setting FWDTEN = 1 enables the Watchdog Timer.
The enabling is done when programming the device.
By default, after chip-erase, FWDTEN bit = 1. Any
device
dsPIC30F devices allows programming of this and
other Configuration bits.
If enabled, the WDT will increment until it overflows or
“times out”. A WDT time-out will force a device Reset
(except during Sleep). To prevent a WDT time-out, the
user must clear the Watchdog Timer using a CLRWDT
instruction.
If a WDT times out during Sleep, the device will wake-
up. The WDTO bit in the RCON register will be cleared
to indicate a wake-up resulting from a WDT time-out.
Setting FWDTEN = 0 allows user software to enable/
disable the Watchdog Timer via the SWDTEN control
bit (RCON<5>).
20.6
The Low-Voltage Detect (LVD) module is used to
detect when the V
threshold value, V
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-
grammable. The internal voltage reference circuitry
requires a nominal amount of time to stabilize, and the
BGST bit (RCON<13>) indicates when the voltage
reference has stabilized.
In some devices, the LVD threshold voltage may be
applied externally on the LVDIN pin.
The LVD module is enabled by setting the LVDEN bit
(RCON<12>).
© 2011 Microchip Technology Inc.
Low-Voltage Detect
programmer
Watchdog Timer (WDT)
WATCHDOG TIMER OPERATION
ENABLING AND DISABLING THE
WDT
LVD
DD
dsPIC30F6011A/6012A/6013A/6014A
, which is determined by the
of the device drops below a
capable
of
programming
20.7
There are two power-saving states that can be entered
through the execution of a special instruction, PWRSAV.
These are: Sleep and Idle.
The format of the PWRSAV instruction is as follows:
PWRSAV <parameter>,
where:
‘parameter’ defines Idle or Sleep mode.
20.7.1
In Sleep mode, the clock to the CPU and peripherals is
shutdown. If an on-chip oscillator is being used, it is
shutdown.
The Fail-Safe Clock Monitor is not functional during
Sleep, since there is no clock to monitor. However,
LPRC clock remains active if WDT is operational during
Sleep.
The Brown-out protection circuit, if enabled, will remain
functional during Sleep.
The processor wakes up from Sleep if at least one of
the following conditions has occurred:
• On any interrupt that is individually enabled and
• On any Reset (POR, BOR and MCLR)
• On WDT time-out
On waking up from Sleep mode, the processor will
restart the same clock that was active prior to entry
into Sleep mode. When clock switching is enabled,
bits COSC<2:0> will determine the oscillator source
that will be used on wake-up. If clock switch is
disabled, then there is only one system clock.
If the clock source is an oscillator, the clock to the
device is held off until OST times out (indicating a
stable oscillator). If PLL is used, the system clock is
held off until LOCK = 1 (indicating that the PLL is
stable). Either way, T
applied.
If EC, FRC, LPRC or EXTRC oscillators are used, then
a delay of T
delay possible on wake-up from Sleep.
Moreover, if LP oscillator was active during Sleep, and
LP is the oscillator used on wake-up, then the start-up
delay will be equal to T
timer delay are not applied. In order to have the small-
est possible start-up delay when waking up from Sleep,
one of these faster wake-up options should be selected
before entering Sleep.
meets the required priority level
Note:
Power-Saving Modes
POR
SLEEP MODE
If a POR or BOR occurred, the selection of
the oscillator is based on the FOS<2:0>
and FPR<4:0> Configuration bits.
(~ 10 μs) is applied. This is the smallest
POR
, T
POR
LOCK
. PWRT delay and OST
and T
DS70143E-page 157
PWRT
delays are

Related parts for DSPIC30F6014AT-20E/PF