ADA4410-6ACPZ-R7 Analog Devices Inc, ADA4410-6ACPZ-R7 Datasheet - Page 12

IC,TV/VIDEO CIRCUIT,TV/Video Filter,LLCC,32PIN,PLASTIC

ADA4410-6ACPZ-R7

Manufacturer Part Number
ADA4410-6ACPZ-R7
Description
IC,TV/VIDEO CIRCUIT,TV/Video Filter,LLCC,32PIN,PLASTIC
Manufacturer
Analog Devices Inc
Type
Video Filterr
Datasheet

Specifications of ADA4410-6ACPZ-R7

Applications
Recorders, Set-Top Boxes
Mounting Type
Surface Mount
Package / Case
32-LFCSP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
ADA4410-6
THEORY OF OPERATION
The ADA4410-6 is an integrated video filtering and driving
solution that offers variable bandwidth to meet the needs of
several different video formats. There are a total of five filter
sections, three for component video and two for Y/C and
composite video. The component video filters have switchable
bandwidths for standard definition interlaced, progressive, and
high definition systems. The Y/C channels have fixed 9 MHz,
3 dB cutoff frequencies and include a summing circuit that
feeds an additional buffer for a composite video output. Each
filter section has a sixth-order Butterworth response that
includes group delay optimization. The group delay variation
from 100 kHz to 36 MHz in the 36 MHz section is 8 ns, which
produces a fast settling pulse response.
The ADA4410-6 is designed to operate in many different video
environments. The supply range is 5 V to 12 V, single supply or
dual supply, and requires a relatively low quiescent current of
15 mA per channel. In single-supply applications, the PSRR is
greater than 70 dB, providing excellent rejection in systems with
supplies that are noisy or under-regulated. In applications
where power consumption is critical, the part can be powered
down to draw 15 μA by pulling the DISABLE pin to the most
positive rail. The ADA4410-6 is also well suited for high
encoding frequency applications because it maintains a stop-
band attenuation of 50 dB beyond 200 MHz.
The ADA4410-6 is intended to take dc-coupled inputs from an
encoder or other ground-referenced video signals. The ADA4410-6
input is high impedance. No minimum or maximum input
termination is required, though input terminations above 1 kΩ
can degrade crosstalk performance at high frequencies. No
clamping is provided internally. For applications where dc
restoration is required, dual supplies work best. Using a
termination resistance of less than a few hundred ohms to
ground on the inputs and suitably adjusting the level shift
circuitry provides precise placement of the output voltage.
Rev. B | Page 12 of 16
For single-supply applications (V
range extends from 100 mV below ground to within 2.0 V of
the most positive supply. Each filter section has a 2:1 input
multiplexer that includes level-shifting circuitry. The level-
shifting circuitry adds a dc component to ground-referenced
input signals so that they can be reproduced accurately without
the output buffers hitting the negative rail. Because the filters
have negative rail input and rail-to-rail output, dc level shifting
is generally not necessary, unless accuracy greater than that of
the saturated output of the driver is required at the most negative
edge. This varies with load but is typically 100 mV in a dc-
coupled, single-supply application. If ac coupling is used, the
saturated output level is higher because the drivers have to
sink more current on the low side. If dual supplies are used
(V
applications, the level shifting circuitry can be used to take a
ground-referenced signal and put the blanking level at ground
while the sync level is below ground.
The output drivers on the ADA4410-6 have rail-to-rail output
capabilities. They provide either 6 dB or 12 dB of gain with
respect to the ground pins. Gain is controlled by the external
gain select pin. Each output is capable of driving two ac- or dc-
coupled 75 Ω source-terminated loads. If a large dc output level
is required while driving two loads, ac coupling should be used
to limit the power dissipation.
Input mux isolation is primarily a function of the source
resistance driving into the ADA4410-6. Higher resistances
result in lower isolation over frequency, while a low source
resistance, such as 75 Ω, has the best isolation performance. In
the SD channels, the isolation variation is most pronounced due
to the stray capacitance that exists between the adjacent input
pins. The HD input pins are not adjacent; therefore, this effect is
less pronounced on the HD channels. See Figure 15 for a
performance comparison of the different source resistances
feeding the SD inputs.
S−
< GND), no level shifting is required. In dual-supply
S−
= GND), the input voltage

Related parts for ADA4410-6ACPZ-R7