MAX2023ETX Maxim Integrated Products, MAX2023ETX Datasheet - Page 4

no-image

MAX2023ETX

Manufacturer Part Number
MAX2023ETX
Description
Modulator / Demodulator High-Dynamic-Range D irect Up-/Downconver
Manufacturer
Maxim Integrated Products
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MAX2023ETX+
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
MAX2023ETX+T
Manufacturer:
MAXIM
Quantity:
112
Part Number:
MAX2023ETX+T
Manufacturer:
MAXIM/美信
Quantity:
20 000
Company:
Part Number:
MAX2023ETX+T
Quantity:
2 400
High-Dynamic-Range, Direct Up-/Downconversion
1500MHz to 2300MHz Quadrature Mod/Demod
(MAX2023 Typical Application Circuit , V
(modulator), V
(demodulator), 0V common-mode input/output, P
R2 = 562Ω, R3 = 300Ω, T
4
Note 1: T
Note 2: Guaranteed by production test.
Note 3: V
Note 4: No baseband drive input. Measured with the baseband inputs terminated in 50Ω. At low output power levels, the output
Note 5: The output noise vs. P
Note 6: The LO noise (L = 10
400
380
360
340
320
300
280
260
240
220
200
70
65
60
55
50
45
40
35
30
25
20
MODULATOR SINGLE-SIDEBAND SUPPRESSION
________________________________________________________________________________________________
SUPPLY CURRENT vs. TEMPERATURE (T
-40
1.5
noise density is equal to the thermal noise floor. See Output Noise Density vs. Output Power plots in Typical Operating
Characteristics .
from carrier.
blocking at operating temperature (T
P
underblocking in dB is NF
C
I/Q
BLOCK
1.6
is the temperature on the exposed paddle.
-15
= 2.66V
BBI
V
1.7
CC
T
vs. LO FREQUENCY
C
LO FREQUENCY (GHz)
= V
TEMPERATURE (°C)
in mW, k is Boltzmann’s constant = 1.381 x 10
= 4.75V
V
= +85°C
CC
1.8
10
BBQ
= 5V
P-P
1.9
T
C
C
differential CW input.
= 2.6V
= -40°C
35
= -40°C to +85°C. Typical values are at V
T
2.0
V
C
CC
= +25°C
(Ln/10)
OUT
= 5.25V
P-P
2.1
60
BLOCK
differential (modulator), P
curve has the slope of LO noise (Ln dBc/Hz) due to reciprocal mixing. Measured at 10MHz offset
2.2
), determined from the modulator measurements can be used to deduce the noise figure under-
CC
85
2.3
C
)
= 10 x log (f
= +4.75V to +5.25V, GND = 0V, I/Q differential inputs driven from a 100Ω DC-coupled source
P
LO
in Kelvin), f
70
65
60
55
50
45
40
35
30
25
20
30
28
26
24
22
20
18
16
14
12
10
MODULATOR SINGLE-SIDEBAND SUPPRESSION
= 0dBm, 1500MHz ≤ f
1.5
1.5
BLOCK
1.6
1.6
P
LO
BLOCK
MODULATOR OUTPUT IP3
RF
= 0dBm
P
1.7
1.7
). Refer to Application Note 3632 .
T
LO
C
vs. LO FREQUENCY
vs. LO FREQUENCY
= +6dBm (demodulator), I/Q differential output drives 50Ω differential load
LO FREQUENCY (GHz)
LO FREQUENCY (GHz)
= -3dBm
= -40°C
(-23)
P
1.8
T
1.8
LO
C
= 1 + (L
CC
= +85°C
= +3dBm
J/K, and L
1.9
1.9
= +5V, f
T
Typical Operating Characteristics
C
LO
= +25°C
2.0
2.0
CN
≤ 2300MHz, 50Ω LO and RF system impedance, R1 = 432Ω,
f
f
LO
2.1
2.1
1
2
- 1) T
= 1.8MHz
= 1.9MHz
CN
= 1850MHz, T
2.2
2.2
= 10
P
/ T
2.3
2.3
(L
O
C
+ LP
/10)
, L
C
BLOCK
70
65
60
55
50
45
40
35
30
25
20
MODULATOR SINGLE-SIDEBAND SUPPRESSION
30
28
26
24
22
20
18
16
14
12
10
C
= +25°C, unless otherwise noted.)
1.5
is the conversion loss. Noise figure
1.5
/ (1000kT
1.6
1.6
MODULATOR OUTPUT IP3
1.7
1.7
vs. LO FREQUENCY
vs. LO FREQUENCY
LO FREQUENCY (GHz)
LO FREQUENCY (GHz)
V
CC
1.8
V
1.8
O
CC
= 4.75V, 5V, 5.25V
), where T
V
= 5V
CC
1.9
1.9
V
= 4.75V
CC
= 5.25V
2.0
2.0
O
2.1
2.1
f
f
1
2
= 290K,
= 1.8MHz
= 1.9MHz
2.2
2.2
2.3
2.3

Related parts for MAX2023ETX