AT91SAM7X512 ATMEL Corporation, AT91SAM7X512 Datasheet - Page 13

no-image

AT91SAM7X512

Manufacturer Part Number
AT91SAM7X512
Description
AT91 ARM Thumb-based Microcontrollers
Manufacturer
ATMEL Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7X512-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X512-AU
Manufacturer:
ATMEL
Quantity:
717
Part Number:
AT91SAM7X512-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X512-AU-999
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X512-CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7X512A-AU
Manufacturer:
ATMEL
Quantity:
168
Part Number:
AT91SAM7X512B-AU
Manufacturer:
ATMEL
Quantity:
2 100
Part Number:
AT91SAM7X512B-AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT91SAM7X512B-CU
Manufacturer:
SILICON
Quantity:
1 001
Part Number:
AT91SAM7X512B-CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
6. I/O Lines Considerations
6.1
6.2
6.3
6.4
6.5
6120DS–ATARM–03-Oct-06
JTAG Port Pins
Test Pin
Reset Pin
ERASE Pin
PIO Controller Lines
TMS, TDI and TCK are schmitt trigger inputs and are not 5-V tolerant. TMS, TDI and TCK do not
integrate a pull-up resistor.
TDO is an output, driven at up to VDDIO, and has no pull-up resistor.
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. The
JTAGSEL pin integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be
left unconnected for normal operations.
T h e T S T p i n i s u s e d f o r m a n u f a c t u r i n g t e s t o r f a s t p r o g r a m m i n g m o d e o f t h e
AT91SAM7X512/256/128 when asserted high. The TST pin integrates a permanent pull-down
resistor of about 15 kΩ to GND, so that it can be left unconnected for normal operations.
To enter fast programming mode, the TST pin and the PA0 and PA1 pins should be tied high
and PA2 tied to low.
Driving the TST pin at a high level while PA0 or PA1 is driven at 0 leads to unpredictable results.
The NRST pin is bidirectional with an open drain output buffer. It is handled by the on-chip reset
controller and can be driven low to provide a reset signal to the external components or asserted
low externally to reset the microcontroller. There is no constraint on the length of the reset pulse,
and the reset controller can guarantee a minimum pulse length. This allows connection of a sim-
ple push-button on the NRST pin as system user reset, and the use of the signal NRST to reset
all the components of the system.
The NRST pin integrates a permanent pull-up resistor to VDDIO.
The ERASE pin is used to re-initialize the Flash content and some of its NVM bits. It integrates a
permanent pull-down resistor of about 15 kΩ to GND, so that it can be left unconnected for nor-
mal operations.
This pin is debounced by the RC oscillator to improve the glitch tolerance. When the pin is tied to
high during less than 100 ms, ERASE pin is not taken into account. The pin must be tied high
during more than 220 ms to perform the re-initialization of the Flash.
All the I/O lines, PA0 to PA30 and PB0 to PB30, are 5V-tolerant and all integrate a programma-
ble pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O
line through the PIO controllers.
5V-tolerant means that the I/O lines can drive voltage level according to VDDIO, but can be
driven with a voltage of up to 5.5V. However, driving an I/O line with a voltage over VDDIO while
the programmable pull-up resistor is enabled will create a current path through the pull-up resis-
AT91SAM7X512/256/128 Preliminary Summary
13

Related parts for AT91SAM7X512