lm4869mh National Semiconductor Corporation, lm4869mh Datasheet - Page 15

no-image

lm4869mh

Manufacturer Part Number
lm4869mh
Description
1.9w Differential Input, Btl Output Stereo Audio Amplifier With Selectable Gain And Shutdown
Manufacturer
National Semiconductor Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LM4869MH
Manufacturer:
AD
Quantity:
264
Part Number:
LM4869MH
Manufacturer:
NS
Quantity:
1 000
Part Number:
LM4869MH
Manufacturer:
NS/国半
Quantity:
20 000
Application Information
BRIDGE CONFIGURATION EXPLANATION
As shown in Figure 1, each of the LM4869’s stereo channels
consists of two operational amplifiers. The LM4869 can be
used to drive a speaker connected between the two outputs
of each channel’s amplifiers.
Figure 1 shows that the output of Amp1 serves as the input
to Amp2, which results in both amplifiers producing signals
identical in magnitude, but 180˚ out of phase. Taking advan-
tage of this phase difference, a load is placed between
OUT+ and OUT- and driven differentially (commonly referred
to as ’bridge mode’). This results in a differential gain of
Bridge mode is different from single-ended amplifiers that
drive loads connected between a single amplifier’s output
and ground. For a given supply voltage, bridge mode has a
distinct advantage over the single-ended configuration: its
differential output doubles the voltage swing across the load.
This results in four times the output power when compared
to a single-ended amplifier under the same conditions. This
increase in attainable output assumes that the amplifier is
not current limited or the output signal is not clipped. To
ensure minimum output signal clipping when selecting one
of the amplifier’s four closed-loop gains, refer to the Audio
Power Amplifier Design section.
Another advantage of the differential bridge output is no net
DC voltage across the load. This results from biasing OUT+
and OUT- at half-supply. This eliminates the coupling capaci-
tor that single supply, single-ended amplifiers require. Elimi-
nating an output coupling capacitor in a single-ended con-
figuration forces a single supply amplifier’s half-supply bias
voltage across the load. The current flow created by the
half-supply bias voltage increases internal IC power dissipa-
tion and may permanently damage loads such as speakers.
POWER DISSIPATION
Power dissipation is a major concern when designing a
successful bridged or single-ended amplifier. Equation (2)
states the maximum power dissipation point for a single-
ended amplifier operating at a given supply voltage and
driving a specified output load.
However, a direct consequence of the increased power de-
livered to the load by a bridge amplifier is an increase in the
internal power dissipation point for a bridge amplifier oper-
ating at the same given conditions.
The LM4869 has four operational amplifiers in one package
and the maximum internal power dissipation is four times
that of a single-ended amplifier. From Equation (3), assum-
ing a 5V power supply and an 8Ω load, the maximum power
dissipation point is 2W. The maximum power dissipation
point obtained from Equation (3) must not exceed the power
dissipation predicted by Equation (4):
P
DMAX
P
DMAX
= 4
P
= (V
DMAX
*
DD
(V
A
VD
DD
)
= (T
2
/(2π
)
= 2(R
2
/(2π
JMAX
2
R
2
L
F
R
) Single-Ended
− T
/R
L
) Bridge Mode
I
)
A
)/θ
JA
(Continued)
(1)
(2)
(3)
(4)
15
For the exposed DAP TSSOP package, θ
T
perature T
internal power dissipation supported by the IC packaging. If
the result of Equation (3) is greater than that of Equation (4),
decrease the supply voltage, increase the load impedance,
or reduce the ambient temperature. For a typical application
with a 5V power supply and an 8Ω load, the maximum
ambient temperature that does not violate the maximum
junction temperature is approximately 68˚C. This further as-
sumes that a device is a surface mount part operating
around the maximum power dissipation point. Since internal
power dissipation is a function of output power, higher am-
bient temperatures are allowed as output power decreases.
Refer to the Typical Performance Characteristics curves for
power dissipation information at lower output power levels.
BTL GAIN SELECTION
The LM4869 features four fixed, internally set, BTL voltage
gains: 6dB, 10dB, 15.6dB, and 21.6dB. Select one of the
four gains by applying a logic level signal to the GAIN0
(MSB) and GAIN1 (LSB) digital inputs.
The closed-loop gain of the first amplifier is adjustable, hav-
ing four different gains, whereas two internal 20kΩ resistors
set the second amplifier’s gain at -1. Table 1 below, shows
the state of the two logic inputs required to select one of the
four gain values.
POWER SUPPLY BYPASSING
As with any power amplifier, proper supply bypassing is
critical for low noise performance and high power supply
rejection. The capacitors connected to the bypass and power
supply pins should be placed as close to the LM4869 as
possible. The capacitor connected between the bypass pin
and ground improves the internal bias voltage’s stability,
producing improved PSRR. The improvements to PSRR
increase as the bypass pin capacitor value increases.
Typical applications employ a 5V regulator with 10µF and a
0.1µF filter capacitors that aid in supply stability. Their pres-
ence, however, does not eliminate the need for bypassing
the LM4869’s supply pins. The selection of bypass capacitor
values, especially C
ments, click and pop performance (as explained in theSe-
lecting External Components section), system cost, and
size constraints.
MICRO-POWER SHUTDOWN
The LM4869 features an active-low micro-power shutdown
mode. The voltage applied to the SHUTDOWN pin controls
the LM4869’s shutdown function. Activate micro-power shut-
down by applying 0V to the SHUTDOWN pin. The logic
threshold is typically 0.4V for a logic low and 1.5V for a logic
high. When active, the LM4869’s micro-power shutdown
feature turns off the amplifier’s bias circuitry, disables the
internal V
into a high impedance state. The result is greatly reduced
power supply current. The low 0.1µA typical shutdown cur-
rent is achieved by applying a voltage to the SHUTDOWN
JAMAX
= 150˚C for the LM4869. For a given ambient tem-
GAIN 0
DD
A
0
0
1
1
, Equation (4) can be used to find the maximum
/2 generator, and forces the amplifier outputs
B
GAIN 1
, depends on desired PSRR require-
0
1
0
1
Selected Gain (dB)
15.6
21.6
10
6
JA
www.national.com
= 41˚C/W.

Related parts for lm4869mh