sc483itstrt Semtech Corporation, sc483itstrt Datasheet - Page 10

no-image

sc483itstrt

Manufacturer Part Number
sc483itstrt
Description
Sc483 Dual Synchronous Buck Pseudo-fixed-frequency Power-supply Controller
Manufacturer
Semtech Corporation
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SC483ITSTRT
Manufacturer:
SEMTECH/美国升特
Quantity:
20 000
The current limit circuitry also protects against negative
over-current (i.e. when the current is flowing from the
load to PGND through the inductor and bottom MOSFET).
In this case, when the bottom MOSFET is turned on, the
phase node, LX, will be higher than PGND initially. The
SC483 monitors the voltage at LX, and if it is greater
than a set threshold voltage of 125mV (nom.) the
bottom MOSFET is turned off. The device then waits for
approximately 2.5µs and then DL goes high for 300ns
(typ.) once more to sense the current. This repeats until
either the over-current condition goes away or the part
latches off due to output overvoltage (see Output
Overvoltage Protection).
Power Good Output
The power good output is an open-drain output and
requires a pull-up resistor. When the output voltage is
16% above or 10% below its set voltage, PGD gets pulled
low. It is held low until the output voltage returns to within
these tolerances once more. PGD is also held low during
start-up and will not be allowed to transition high until
soft start is over (440 switching cycles) and the output
reaches 90% of its set voltage. There is a 5µs delay built
into the PGD circuitry to prevent false transitions.
Output Overvoltage Protection
When the output exceeds 16% of its set voltage the
low-side MOSFET is latched on. It stays latched on and
the controller is latched off until reset (see below). There
is a 5µs delay built into the OV protection circuit to
prevent false transitions.
Output Undervoltage Protection
When the output is 30% below its set voltage the output
is latched in a tri-stated condition. It stays latched and
the controller is latched off until reset (see below). There
is a 5µs delay built into the UV protection circuit to
prevent false transitions. Note: to reset from any fault,
VCCA or EN/PSV must be toggled.
POR, UVLO and Softstart
An internal power-on reset (POR) occurs when VCCA
exceeds 3V, starting up the internal biasing. VCCA
undervoltage lockout (UVLO) circuitry inhibits the
controller until VCCA rises above 4.2V. At this time the
UVLO circuitry resets the fault latch and soft start timer,
and allows switching to occur if the device is enabled.
POWER MANAGEMENT
2005 Semtech Corp.
10
Switching always starts with DL to charge up the BST
capacitor. With the softstart circuit (automatically)
enabled, it will progressively limit the output current (by
limiting the current out of the ILIM pin) over a
predetermined time period of 440 switching cycles.
The ramp occurs in four steps:
1) 110 cycles at 25% ILIM with double minimum off-time
(for purposes of the on-time one-shot, there is an
internal positive offset of 120mV to VOUT during this
period to aid in startup)
2) 110 cycles at 50% ILIM with normal minimum off-time
3) 110 cycles at 75% ILIM with normal minimum off-time
4) 110 cycles at 100% ILIM with normal minimum
off-time.
At this point the output undervoltage and power good
circuitry is enabled. There is 100mV of hysteresis built
into the UVLO circuit and when VCCA falls to 4.1V (nom.)
the output drivers are shut down and tristated.
MOSFET Gate Drivers
The DH and DL drivers are optimized for driving
moderate-sized high-side, and larger low-side power
MOSFETs. An adaptive dead-time circuit monitors the DL
output and prevents the high-side MOSFET from turning
on until DL is fully off (below ~1V). Semtech’s
SmartDriver™ FET drive first pulls DH high with a pull-up
resistance of 10
point, an additional pull-up device is activated, reducing
the resistance to 2
external gate or boost resistor. The adaptive dead-time
circuit also monitors the phase node, LX, to determine
the state of the high side MOSFET, and prevents the low-
side MOSFET from turning on until DH is fully off (LX
below ~1V). Be sure to have low resistance and low
inductance between the DH and DL outputs to the gate
of each MOSFET.
Dropout Performance
The output voltage adjust range for continuous-
conduction operation is limited by the fixed 550ns
(maximum) minimum off-time one-shot. For best dropout
performance, use the slowest on-time setting of 200kHz.
When working with low input voltages, the duty-factor
limit must be calculated using worst-case values for on
and off times. The IC duty-factor limitation is given by:
DUTY
t
ON
(
MIN
t
ON
)
(
MIN
t
OFF
)
(typ.) until LX = 1.5V (typ.). At this
(
(typ.). This negates the need for an
MAX
)
www.semtech.com
SC483

Related parts for sc483itstrt